Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia

This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors that are used to measure in situ incident and reflected illuminance values on a daily timescale. The ratio between reflected vs. incident illuminances is called the <i>albedo index&...

Full description

Bibliographic Details
Main Authors: T. Condom, M. Dumont, L. Mourre, J. E. Sicart, A. Rabatel, A. Viani, A. Soruco
Format: Article
Language:English
Published: Copernicus Publications 2018-06-01
Series:Geoscientific Instrumentation, Methods and Data Systems
Online Access:https://www.geosci-instrum-method-data-syst.net/7/169/2018/gi-7-169-2018.pdf
id doaj-3ccc09b638c94306979197e00f47fbf2
record_format Article
spelling doaj-3ccc09b638c94306979197e00f47fbf22020-11-25T00:26:35ZengCopernicus PublicationsGeoscientific Instrumentation, Methods and Data Systems2193-08562193-08642018-06-01716917810.5194/gi-7-169-2018Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in BoliviaT. Condom0M. Dumont1L. Mourre2J. E. Sicart3A. Rabatel4A. Viani5A. Soruco6Université de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, FranceMétéo-France, CNRS, CNRM-GAME/CEN (UMR3589), Grenoble, FranceUniversité de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, FranceUniversité de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, FranceUniversité de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, FranceUniversité de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, FranceUMSA, Instituto de Geológicas y del Medio Ambiente, La Paz, BoliviaThis study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors that are used to measure in situ incident and reflected illuminance values on a daily timescale. The ratio between reflected vs. incident illuminances is called the <i>albedo index</i> and can be compared with actual albedo values. Due to the shape of the sensor, the direct radiation for zenith angles ranging from 55 to 90° is not measured. The spectral response of the LCA varies with the solar irradiance wavelengths within the range 0.26 to 1.195 µm, and the LCA detects 85 % of the total spectral solar irradiance for clear sky conditions. We first consider the theoretical results obtained for 10 different ice and snow surfaces with clear sky and cloudy sky incident solar irradiance that show that the LCA spectral response may be responsible for an overestimation of the theoretical albedo values by roughly 9 % at most. Then, the LCA values are compared with two <q>traditional</q> albedometers, which are CM3 pyranometers (Kipp &amp; Zonen), in the shortwave domain from 0.305 to 2.800 µm over a 1-year measurement period (2013) for two sites in a tropical mountainous catchment in Bolivia. One site is located on the Zongo Glacier (i.e., snow and ice surfaces) and the second one is found on the crest of the lateral moraine (bare soil and snow surfaces), which present a horizontal surface and a sky view factor of 0.98. The results, at daily time steps (256 days), given by the LCA are in good agreement with the classic albedo measurements taken with pyranometers with <i>R</i><sup>2</sup> = 0.83 (RMSD  =  0.10) and <i>R</i><sup>2</sup> = 0.92 (RMSD  =  0.08) for the Zongo Glacier and the right-hand side lateral moraine, respectively. This demonstrates that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost. Finally, during the period from September 2015 to June 2016, direct observations were collected with 15 LCAs on the Zongo Glacier and successfully compared with LANDSAT images showing the surface conditions of the glacier (i.e., snow or ice). This comparison illustrates the efficiency of this system to monitor the daily time step changes in the snow and ice coverage distributed on the glacier. Despite the limits imposed by the angle view restrictions, the LCA can be used between 45° N and 45° S during the ablation season (spring and summer) when the melt rate related to the albedo is the most important.https://www.geosci-instrum-method-data-syst.net/7/169/2018/gi-7-169-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author T. Condom
M. Dumont
L. Mourre
J. E. Sicart
A. Rabatel
A. Viani
A. Soruco
spellingShingle T. Condom
M. Dumont
L. Mourre
J. E. Sicart
A. Rabatel
A. Viani
A. Soruco
Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
Geoscientific Instrumentation, Methods and Data Systems
author_facet T. Condom
M. Dumont
L. Mourre
J. E. Sicart
A. Rabatel
A. Viani
A. Soruco
author_sort T. Condom
title Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
title_short Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
title_full Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
title_fullStr Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
title_full_unstemmed Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
title_sort technical note: a low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in bolivia
publisher Copernicus Publications
series Geoscientific Instrumentation, Methods and Data Systems
issn 2193-0856
2193-0864
publishDate 2018-06-01
description This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors that are used to measure in situ incident and reflected illuminance values on a daily timescale. The ratio between reflected vs. incident illuminances is called the <i>albedo index</i> and can be compared with actual albedo values. Due to the shape of the sensor, the direct radiation for zenith angles ranging from 55 to 90° is not measured. The spectral response of the LCA varies with the solar irradiance wavelengths within the range 0.26 to 1.195 µm, and the LCA detects 85 % of the total spectral solar irradiance for clear sky conditions. We first consider the theoretical results obtained for 10 different ice and snow surfaces with clear sky and cloudy sky incident solar irradiance that show that the LCA spectral response may be responsible for an overestimation of the theoretical albedo values by roughly 9 % at most. Then, the LCA values are compared with two <q>traditional</q> albedometers, which are CM3 pyranometers (Kipp &amp; Zonen), in the shortwave domain from 0.305 to 2.800 µm over a 1-year measurement period (2013) for two sites in a tropical mountainous catchment in Bolivia. One site is located on the Zongo Glacier (i.e., snow and ice surfaces) and the second one is found on the crest of the lateral moraine (bare soil and snow surfaces), which present a horizontal surface and a sky view factor of 0.98. The results, at daily time steps (256 days), given by the LCA are in good agreement with the classic albedo measurements taken with pyranometers with <i>R</i><sup>2</sup> = 0.83 (RMSD  =  0.10) and <i>R</i><sup>2</sup> = 0.92 (RMSD  =  0.08) for the Zongo Glacier and the right-hand side lateral moraine, respectively. This demonstrates that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost. Finally, during the period from September 2015 to June 2016, direct observations were collected with 15 LCAs on the Zongo Glacier and successfully compared with LANDSAT images showing the surface conditions of the glacier (i.e., snow or ice). This comparison illustrates the efficiency of this system to monitor the daily time step changes in the snow and ice coverage distributed on the glacier. Despite the limits imposed by the angle view restrictions, the LCA can be used between 45° N and 45° S during the ablation season (spring and summer) when the melt rate related to the albedo is the most important.
url https://www.geosci-instrum-method-data-syst.net/7/169/2018/gi-7-169-2018.pdf
work_keys_str_mv AT tcondom technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT mdumont technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT lmourre technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT jesicart technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT arabatel technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT aviani technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
AT asoruco technicalnotealowcostalbedometerforsnowandicemeasurementstheoreticalresultsandapplicationonatropicalmountaininbolivia
_version_ 1725343899592949760