Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure

In this paper, we deduce a condition for a strategy S1 to be more abundant on average at equilibrium under weak selection than another strategy S2 in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individ...

Full description

Bibliographic Details
Main Authors: Dhaker Kroumi, Sabin Lessard
Format: Article
Language:English
Published: MDPI AG 2015-09-01
Series:Games
Subjects:
Online Access:http://www.mdpi.com/2073-4336/6/3/318
id doaj-3cc8c7b51459442fa1868066803b5372
record_format Article
spelling doaj-3cc8c7b51459442fa1868066803b53722020-11-24T21:38:07ZengMDPI AGGames2073-43362015-09-016331834610.3390/g6030318g6030318Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set StructureDhaker Kroumi0Sabin Lessard1Université de Montréal, Montréal, QC H3C 3J7, CanadaUniversité de Montréal, Montréal, QC H3C 3J7, CanadaIn this paper, we deduce a condition for a strategy S1 to be more abundant on average at equilibrium under weak selection than another strategy S2 in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individual reproduces at a time with some probability depending on the payoff received in pairwise interactions within colonies and between colonies and that the offspring replaces one individual chosen at random in the colony into which the offspring migrates. It is shown that an expected weighted average equilibrium frequency of S1 under weak symmetric strategy mutation between S1 and S2 is increased by weak selection if an expected weighted payoff of S1 near neutrality exceeds the corresponding expected weighted payoff of S2. The weights are given in terms of reproductive values of individuals in the different colonies in the neutral model. This condition for S1 to be favoured by weak selection is obtained from a strong migration limit of the genealogical process under neutrality for a sample of individuals, which is proven using a two-time scale argument. The condition is applied to games between individuals in colonies with linear or cyclic dominance and between individuals belonging to groups represented by subsets of a given set.http://www.mdpi.com/2073-4336/6/3/318abundance in frequencydominance hierarchyprisoner’s dilemmareproductive valueset-structured populationsstructured coalescent
collection DOAJ
language English
format Article
sources DOAJ
author Dhaker Kroumi
Sabin Lessard
spellingShingle Dhaker Kroumi
Sabin Lessard
Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
Games
abundance in frequency
dominance hierarchy
prisoner’s dilemma
reproductive value
set-structured populations
structured coalescent
author_facet Dhaker Kroumi
Sabin Lessard
author_sort Dhaker Kroumi
title Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
title_short Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
title_full Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
title_fullStr Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
title_full_unstemmed Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure
title_sort strong migration limit for games in structured populations: applications to dominance hierarchy and set structure
publisher MDPI AG
series Games
issn 2073-4336
publishDate 2015-09-01
description In this paper, we deduce a condition for a strategy S1 to be more abundant on average at equilibrium under weak selection than another strategy S2 in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individual reproduces at a time with some probability depending on the payoff received in pairwise interactions within colonies and between colonies and that the offspring replaces one individual chosen at random in the colony into which the offspring migrates. It is shown that an expected weighted average equilibrium frequency of S1 under weak symmetric strategy mutation between S1 and S2 is increased by weak selection if an expected weighted payoff of S1 near neutrality exceeds the corresponding expected weighted payoff of S2. The weights are given in terms of reproductive values of individuals in the different colonies in the neutral model. This condition for S1 to be favoured by weak selection is obtained from a strong migration limit of the genealogical process under neutrality for a sample of individuals, which is proven using a two-time scale argument. The condition is applied to games between individuals in colonies with linear or cyclic dominance and between individuals belonging to groups represented by subsets of a given set.
topic abundance in frequency
dominance hierarchy
prisoner’s dilemma
reproductive value
set-structured populations
structured coalescent
url http://www.mdpi.com/2073-4336/6/3/318
work_keys_str_mv AT dhakerkroumi strongmigrationlimitforgamesinstructuredpopulationsapplicationstodominancehierarchyandsetstructure
AT sabinlessard strongmigrationlimitforgamesinstructuredpopulationsapplicationstodominancehierarchyandsetstructure
_version_ 1725935497580118016