Filippov's theorem for impulsive differential inclusions with fractional order

In this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form: $$ \begin{array}{rlll} D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\ y(t^+_{k})-y(t^-_k)&...

Full description

Bibliographic Details
Main Author: Abdelghani Ouahab
Format: Article
Language:English
Published: University of Szeged 2009-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=425
id doaj-3cba30f69acf4a708419de31fd34ba61
record_format Article
spelling doaj-3cba30f69acf4a708419de31fd34ba612021-07-14T07:21:21ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752009-10-0120092312310.14232/ejqtde.2009.4.23425Filippov's theorem for impulsive differential inclusions with fractional orderAbdelghani Ouahab0Université de Sidi Bel Abbés, Sidi Bel Abbés, AlgérieIn this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form: $$ \begin{array}{rlll} D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\ y'(t^+_{k})-y'(t^-_k)&=&\overline{I}_{k}(y'(t_{k}^{-})), &k=1,\ldots,m,\\ y(0)&=&a,\ y'(0)=c,\ \end{array}$$ where $J=[0,b],$ $D^{\alpha}_*$ denotes the Caputo fractional derivative and $F$ is a set-valued map. The functions $I_k,\overline{I}_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m$).http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=425
collection DOAJ
language English
format Article
sources DOAJ
author Abdelghani Ouahab
spellingShingle Abdelghani Ouahab
Filippov's theorem for impulsive differential inclusions with fractional order
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Abdelghani Ouahab
author_sort Abdelghani Ouahab
title Filippov's theorem for impulsive differential inclusions with fractional order
title_short Filippov's theorem for impulsive differential inclusions with fractional order
title_full Filippov's theorem for impulsive differential inclusions with fractional order
title_fullStr Filippov's theorem for impulsive differential inclusions with fractional order
title_full_unstemmed Filippov's theorem for impulsive differential inclusions with fractional order
title_sort filippov's theorem for impulsive differential inclusions with fractional order
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2009-10-01
description In this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form: $$ \begin{array}{rlll} D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\ y'(t^+_{k})-y'(t^-_k)&=&\overline{I}_{k}(y'(t_{k}^{-})), &k=1,\ldots,m,\\ y(0)&=&a,\ y'(0)=c,\ \end{array}$$ where $J=[0,b],$ $D^{\alpha}_*$ denotes the Caputo fractional derivative and $F$ is a set-valued map. The functions $I_k,\overline{I}_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m$).
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=425
work_keys_str_mv AT abdelghaniouahab filippovstheoremforimpulsivedifferentialinclusionswithfractionalorder
_version_ 1721303808433192960