Filippov's theorem for impulsive differential inclusions with fractional order
In this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form: $$ \begin{array}{rlll} D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\ y(t^+_{k})-y(t^-_k)&...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2009-10-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=425 |
id |
doaj-3cba30f69acf4a708419de31fd34ba61 |
---|---|
record_format |
Article |
spelling |
doaj-3cba30f69acf4a708419de31fd34ba612021-07-14T07:21:21ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752009-10-0120092312310.14232/ejqtde.2009.4.23425Filippov's theorem for impulsive differential inclusions with fractional orderAbdelghani Ouahab0Université de Sidi Bel Abbés, Sidi Bel Abbés, AlgérieIn this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form: $$ \begin{array}{rlll} D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\ y'(t^+_{k})-y'(t^-_k)&=&\overline{I}_{k}(y'(t_{k}^{-})), &k=1,\ldots,m,\\ y(0)&=&a,\ y'(0)=c,\ \end{array}$$ where $J=[0,b],$ $D^{\alpha}_*$ denotes the Caputo fractional derivative and $F$ is a set-valued map. The functions $I_k,\overline{I}_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m$).http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=425 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdelghani Ouahab |
spellingShingle |
Abdelghani Ouahab Filippov's theorem for impulsive differential inclusions with fractional order Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Abdelghani Ouahab |
author_sort |
Abdelghani Ouahab |
title |
Filippov's theorem for impulsive differential inclusions with fractional order |
title_short |
Filippov's theorem for impulsive differential inclusions with fractional order |
title_full |
Filippov's theorem for impulsive differential inclusions with fractional order |
title_fullStr |
Filippov's theorem for impulsive differential inclusions with fractional order |
title_full_unstemmed |
Filippov's theorem for impulsive differential inclusions with fractional order |
title_sort |
filippov's theorem for impulsive differential inclusions with fractional order |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2009-10-01 |
description |
In this paper, we present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form:
$$ \begin{array}{rlll}
D^{\alpha}_*y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in
J\backslash
\{t_{1},\ldots,t_{m}\},\ \alpha\in(1,2],\\
y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\
y'(t^+_{k})-y'(t^-_k)&=&\overline{I}_{k}(y'(t_{k}^{-})), &k=1,\ldots,m,\\
y(0)&=&a,\ y'(0)=c,\
\end{array}$$
where $J=[0,b],$ $D^{\alpha}_*$ denotes the Caputo fractional derivative and $F$ is a set-valued map. The functions $I_k,\overline{I}_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m$). |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=425 |
work_keys_str_mv |
AT abdelghaniouahab filippovstheoremforimpulsivedifferentialinclusionswithfractionalorder |
_version_ |
1721303808433192960 |