Simpson’s Rule and Hermite–Hadamard Inequality for Non-Convex Functions
In this article we give a variant of the Hermite–Hadamard integral inequality for twice differentiable functions. It represents an improvement of this inequality in the case of convex/concave functions. Sharp two-sided inequalities for Simpson’s rule are also proven along with several extensions....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/8/1248 |
Summary: | In this article we give a variant of the Hermite–Hadamard integral inequality for twice differentiable functions. It represents an improvement of this inequality in the case of convex/concave functions. Sharp two-sided inequalities for Simpson’s rule are also proven along with several extensions. |
---|---|
ISSN: | 2227-7390 |