A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases
There exists a time lag between short-term exposure to fine particulate matter (PM2.5) and incidence of respiratory diseases. The quantification of length of the time lag is significant for preparation and allocation of relevant medical resources. Several classic lag analysis methods have been appli...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9153761/ |
id |
doaj-3ca4378eafc9420f8b07f2b81e230514 |
---|---|
record_format |
Article |
spelling |
doaj-3ca4378eafc9420f8b07f2b81e2305142021-03-30T04:03:12ZengIEEEIEEE Access2169-35362020-01-01814559314560010.1109/ACCESS.2020.30135439153761A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory DiseasesJiaying Lu0Pengju Bu1Xiaolin Xia2Ling Yao3https://orcid.org/0000-0002-6120-5806Zhixin Zhang4Yuanju Tan5State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, ChinaBeijing Huayun Shinetek Science and Technology Company Ltd., Beijing, ChinaSouthern Marine Science and Engineering Guangdong Laboratory, Guangzhou, ChinaState Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, ChinaInternational Medical Services, China-Japan Friendship Hospital, Beijing, ChinaInternational Medical Services, China-Japan Friendship Hospital, Beijing, ChinaThere exists a time lag between short-term exposure to fine particulate matter (PM2.5) and incidence of respiratory diseases. The quantification of length of the time lag is significant for preparation and allocation of relevant medical resources. Several classic lag analysis methods have been applied to determine this length. However, different models often lead to distinct results and which one is better is subtle. The prerequisite of obtaining the reliable length is that the model can truly reveal the underlying pattern hidden in the above relationship. Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the field of deep learning, whose strong capability makes it widely applied in many fields. In this study, we manage to exploit it to acquire the time-lag length in the exposure-response relationship. The relationship between exposure and response is assumed as linear and non-linear, and models with and without confounding factors are performed under these two assumptions. Results of DLNM model show that the best hospital emergency visit prediction appears in 3 lag days, with the maximum RR value of 1.004357 (95% CI: 1.000938-1.009563). Then, a vary of LSTM models with different time steps are performed, which are evaluated by mean absolute error (MAE), the mean absolute percentage error (MAPE), the root of mean square error (RMSE) and R square (R<sup>2</sup>). The results show that LSTM of time step 3 achieves the lowest MAE (33), MAPE (9.86), RMSE (42) and the highest R<sup>2</sup> (0.78), consistent with the result of DLNM model. Also, the proposed model is compared with ARIMA model, one of the commonly used forecasting models, showing better accuracy. This demonstrates that LSTM can be used as a new method to detect the lag effect of PM2.5 on respiratory diseases.https://ieeexplore.ieee.org/document/9153761/Fine particles (PM₂.₅)respiratory diseases predictionlag distribution effectdistributed lag non-linear model (DLNM)long short-term memory (LSTM) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiaying Lu Pengju Bu Xiaolin Xia Ling Yao Zhixin Zhang Yuanju Tan |
spellingShingle |
Jiaying Lu Pengju Bu Xiaolin Xia Ling Yao Zhixin Zhang Yuanju Tan A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases IEEE Access Fine particles (PM₂.₅) respiratory diseases prediction lag distribution effect distributed lag non-linear model (DLNM) long short-term memory (LSTM) |
author_facet |
Jiaying Lu Pengju Bu Xiaolin Xia Ling Yao Zhixin Zhang Yuanju Tan |
author_sort |
Jiaying Lu |
title |
A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases |
title_short |
A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases |
title_full |
A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases |
title_fullStr |
A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases |
title_full_unstemmed |
A New Deep Learning Algorithm for Detecting the Lag Effect of Fine Particles on Hospital Emergency Visits for Respiratory Diseases |
title_sort |
new deep learning algorithm for detecting the lag effect of fine particles on hospital emergency visits for respiratory diseases |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
There exists a time lag between short-term exposure to fine particulate matter (PM2.5) and incidence of respiratory diseases. The quantification of length of the time lag is significant for preparation and allocation of relevant medical resources. Several classic lag analysis methods have been applied to determine this length. However, different models often lead to distinct results and which one is better is subtle. The prerequisite of obtaining the reliable length is that the model can truly reveal the underlying pattern hidden in the above relationship. Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the field of deep learning, whose strong capability makes it widely applied in many fields. In this study, we manage to exploit it to acquire the time-lag length in the exposure-response relationship. The relationship between exposure and response is assumed as linear and non-linear, and models with and without confounding factors are performed under these two assumptions. Results of DLNM model show that the best hospital emergency visit prediction appears in 3 lag days, with the maximum RR value of 1.004357 (95% CI: 1.000938-1.009563). Then, a vary of LSTM models with different time steps are performed, which are evaluated by mean absolute error (MAE), the mean absolute percentage error (MAPE), the root of mean square error (RMSE) and R square (R<sup>2</sup>). The results show that LSTM of time step 3 achieves the lowest MAE (33), MAPE (9.86), RMSE (42) and the highest R<sup>2</sup> (0.78), consistent with the result of DLNM model. Also, the proposed model is compared with ARIMA model, one of the commonly used forecasting models, showing better accuracy. This demonstrates that LSTM can be used as a new method to detect the lag effect of PM2.5 on respiratory diseases. |
topic |
Fine particles (PM₂.₅) respiratory diseases prediction lag distribution effect distributed lag non-linear model (DLNM) long short-term memory (LSTM) |
url |
https://ieeexplore.ieee.org/document/9153761/ |
work_keys_str_mv |
AT jiayinglu anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT pengjubu anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT xiaolinxia anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT lingyao anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT zhixinzhang anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT yuanjutan anewdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT jiayinglu newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT pengjubu newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT xiaolinxia newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT lingyao newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT zhixinzhang newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases AT yuanjutan newdeeplearningalgorithmfordetectingthelageffectoffineparticlesonhospitalemergencyvisitsforrespiratorydiseases |
_version_ |
1724182394309705728 |