Summary: | Miura transform is known as the transformation between Korweg de-Vries equation and modified Korweg de-Vries equation. Its formal similarity to the Cole-Hopf transform has been noticed. This fact sheds light on the logarithmic type transformations as an origin of a certain kind of nonlinearity in the soliton equations. In this article, based on the logarithmic representation of operators in infinite-dimensional Banach spaces, a structure common to both Miura and Cole-Hopf transforms is discussed. In conclusion, the Miura transform is generalized as the transform in abstract Banach spaces, and it is applied to the higher order abstract evolution equations.
|