A deep-learning framework for multi-level peptide–protein interaction prediction

Peptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the intera...

Full description

Bibliographic Details
Main Authors: Yipin Lei, Shuya Li, Ziyi Liu, Fangping Wan, Tingzhong Tian, Shao Li, Dan Zhao, Jianyang Zeng
Format: Article
Language:English
Published: Nature Publishing Group 2021-09-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-25772-4
id doaj-3c57279c8dca432e92343f39c256dd79
record_format Article
spelling doaj-3c57279c8dca432e92343f39c256dd792021-09-19T11:48:39ZengNature Publishing GroupNature Communications2041-17232021-09-0112111010.1038/s41467-021-25772-4A deep-learning framework for multi-level peptide–protein interaction predictionYipin Lei0Shuya Li1Ziyi Liu2Fangping Wan3Tingzhong Tian4Shao Li5Dan Zhao6Jianyang Zeng7Institute for Interdisciplinary Information Sciences, Tsinghua UniversityMachine Learning Department, Silexon AI Technology Co., Ltd.Machine Learning Department, Silexon AI Technology Co., Ltd.Machine Learning Department, Silexon AI Technology Co., Ltd.Institute for Interdisciplinary Information Sciences, Tsinghua UniversityInstitute of TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua UniversityInstitute for Interdisciplinary Information Sciences, Tsinghua UniversityInstitute for Interdisciplinary Information Sciences, Tsinghua UniversityPeptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the interactions.https://doi.org/10.1038/s41467-021-25772-4
collection DOAJ
language English
format Article
sources DOAJ
author Yipin Lei
Shuya Li
Ziyi Liu
Fangping Wan
Tingzhong Tian
Shao Li
Dan Zhao
Jianyang Zeng
spellingShingle Yipin Lei
Shuya Li
Ziyi Liu
Fangping Wan
Tingzhong Tian
Shao Li
Dan Zhao
Jianyang Zeng
A deep-learning framework for multi-level peptide–protein interaction prediction
Nature Communications
author_facet Yipin Lei
Shuya Li
Ziyi Liu
Fangping Wan
Tingzhong Tian
Shao Li
Dan Zhao
Jianyang Zeng
author_sort Yipin Lei
title A deep-learning framework for multi-level peptide–protein interaction prediction
title_short A deep-learning framework for multi-level peptide–protein interaction prediction
title_full A deep-learning framework for multi-level peptide–protein interaction prediction
title_fullStr A deep-learning framework for multi-level peptide–protein interaction prediction
title_full_unstemmed A deep-learning framework for multi-level peptide–protein interaction prediction
title_sort deep-learning framework for multi-level peptide–protein interaction prediction
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-09-01
description Peptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the interactions.
url https://doi.org/10.1038/s41467-021-25772-4
work_keys_str_mv AT yipinlei adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT shuyali adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT ziyiliu adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT fangpingwan adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT tingzhongtian adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT shaoli adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT danzhao adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT jianyangzeng adeeplearningframeworkformultilevelpeptideproteininteractionprediction
AT yipinlei deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT shuyali deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT ziyiliu deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT fangpingwan deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT tingzhongtian deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT shaoli deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT danzhao deeplearningframeworkformultilevelpeptideproteininteractionprediction
AT jianyangzeng deeplearningframeworkformultilevelpeptideproteininteractionprediction
_version_ 1717375501325041664