Improved Efficiency of Graphene/Si Heterojunction Solar Cells by Optimizing Hydrocarbon Feed Rate

Four different graphene films were synthesized via chemical vapor deposition by using acetonitrile with feed rates of 0.01, 0.02, 0.04, and 0.06 mL/min. Heterojunction solar cells were assembled by transferring as-synthesized graphene films onto n-Si. Solar cells based on graphene samples produced a...

Full description

Bibliographic Details
Main Authors: Zexia Zhang, Tongxiang Cui, Ruitao Lv, Hongwei Zhu, Kunlin Wang, Dehai Wu, Feiyu Kang
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2014/359305
Description
Summary:Four different graphene films were synthesized via chemical vapor deposition by using acetonitrile with feed rates of 0.01, 0.02, 0.04, and 0.06 mL/min. Heterojunction solar cells were assembled by transferring as-synthesized graphene films onto n-Si. Solar cells based on graphene samples produced at 0.01, 0.02, 0.04, and 0.06 mL/min demonstrate power conversion efficiencies of 2.26%, 2.10%, 1.02%, and 0.94%, respectively. When HNO3 was used to dope the graphene films, the corresponding photovoltaic efficiencies were increased to 4.98%, 4.19%, 2.04%, and 1.74%, respectively. Mechanism for the improved efficiency of graphene/Si heterojunction solar cells was also investigated.
ISSN:1687-4110
1687-4129