Dynamic properties of the dynamical system SFnm(X), SFnm(f))

Let X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) :...

Full description

Bibliographic Details
Main Authors: Franco Barragán, Alicia Santiago-Santos, Jesús F. Tenorio
Format: Article
Language:English
Published: Universitat Politècnica de València 2020-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/11807
id doaj-3c2c559ad08e47adae2cbdb708df3eb5
record_format Article
spelling doaj-3c2c559ad08e47adae2cbdb708df3eb52020-11-25T02:06:33ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472020-04-01211173410.4995/agt.2020.118078037Dynamic properties of the dynamical system SFnm(X), SFnm(f))Franco Barragán0Alicia Santiago-Santos1Jesús F. Tenorio2Universidad Tecnológica de la MixtecaUniversidad Tecnológica de la MixtecaUniversidad Tecnológica de la MixtecaLet X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) : SFnm(X) → SFnm(X). In this paper, we introduce the dynamical system (SFnm(X), SFnm (f)) and we investigate some relationships between the dynamical systems (X, f), (Fn(X), Fn(f)), (SFn(X), SFn(f)) and (SFnm(X), SFnm(f)) when these systems are: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, irreducible, feebly open and turbulent.https://polipapers.upv.es/index.php/AGT/article/view/11807chaoticcontinuumdynamical systemexactfeebly openhyperspaceinduced mapirreduciblemixingstrongly transitivesymmetric productsymmetric product suspensiontotally transitivetransitiveturbulentweakly mixing
collection DOAJ
language English
format Article
sources DOAJ
author Franco Barragán
Alicia Santiago-Santos
Jesús F. Tenorio
spellingShingle Franco Barragán
Alicia Santiago-Santos
Jesús F. Tenorio
Dynamic properties of the dynamical system SFnm(X), SFnm(f))
Applied General Topology
chaotic
continuum
dynamical system
exact
feebly open
hyperspace
induced map
irreducible
mixing
strongly transitive
symmetric product
symmetric product suspension
totally transitive
transitive
turbulent
weakly mixing
author_facet Franco Barragán
Alicia Santiago-Santos
Jesús F. Tenorio
author_sort Franco Barragán
title Dynamic properties of the dynamical system SFnm(X), SFnm(f))
title_short Dynamic properties of the dynamical system SFnm(X), SFnm(f))
title_full Dynamic properties of the dynamical system SFnm(X), SFnm(f))
title_fullStr Dynamic properties of the dynamical system SFnm(X), SFnm(f))
title_full_unstemmed Dynamic properties of the dynamical system SFnm(X), SFnm(f))
title_sort dynamic properties of the dynamical system sfnm(x), sfnm(f))
publisher Universitat Politècnica de València
series Applied General Topology
issn 1576-9402
1989-4147
publishDate 2020-04-01
description Let X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) : SFnm(X) → SFnm(X). In this paper, we introduce the dynamical system (SFnm(X), SFnm (f)) and we investigate some relationships between the dynamical systems (X, f), (Fn(X), Fn(f)), (SFn(X), SFn(f)) and (SFnm(X), SFnm(f)) when these systems are: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, irreducible, feebly open and turbulent.
topic chaotic
continuum
dynamical system
exact
feebly open
hyperspace
induced map
irreducible
mixing
strongly transitive
symmetric product
symmetric product suspension
totally transitive
transitive
turbulent
weakly mixing
url https://polipapers.upv.es/index.php/AGT/article/view/11807
work_keys_str_mv AT francobarragan dynamicpropertiesofthedynamicalsystemsfnmxsfnmf
AT aliciasantiagosantos dynamicpropertiesofthedynamicalsystemsfnmxsfnmf
AT jesusftenorio dynamicpropertiesofthedynamicalsystemsfnmxsfnmf
_version_ 1724933268467351552