Dynamic properties of the dynamical system SFnm(X), SFnm(f))
Let X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) :...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2020-04-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/AGT/article/view/11807 |
id |
doaj-3c2c559ad08e47adae2cbdb708df3eb5 |
---|---|
record_format |
Article |
spelling |
doaj-3c2c559ad08e47adae2cbdb708df3eb52020-11-25T02:06:33ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472020-04-01211173410.4995/agt.2020.118078037Dynamic properties of the dynamical system SFnm(X), SFnm(f))Franco Barragán0Alicia Santiago-Santos1Jesús F. Tenorio2Universidad Tecnológica de la MixtecaUniversidad Tecnológica de la MixtecaUniversidad Tecnológica de la MixtecaLet X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) : SFnm(X) → SFnm(X). In this paper, we introduce the dynamical system (SFnm(X), SFnm (f)) and we investigate some relationships between the dynamical systems (X, f), (Fn(X), Fn(f)), (SFn(X), SFn(f)) and (SFnm(X), SFnm(f)) when these systems are: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, irreducible, feebly open and turbulent.https://polipapers.upv.es/index.php/AGT/article/view/11807chaoticcontinuumdynamical systemexactfeebly openhyperspaceinduced mapirreduciblemixingstrongly transitivesymmetric productsymmetric product suspensiontotally transitivetransitiveturbulentweakly mixing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Franco Barragán Alicia Santiago-Santos Jesús F. Tenorio |
spellingShingle |
Franco Barragán Alicia Santiago-Santos Jesús F. Tenorio Dynamic properties of the dynamical system SFnm(X), SFnm(f)) Applied General Topology chaotic continuum dynamical system exact feebly open hyperspace induced map irreducible mixing strongly transitive symmetric product symmetric product suspension totally transitive transitive turbulent weakly mixing |
author_facet |
Franco Barragán Alicia Santiago-Santos Jesús F. Tenorio |
author_sort |
Franco Barragán |
title |
Dynamic properties of the dynamical system SFnm(X), SFnm(f)) |
title_short |
Dynamic properties of the dynamical system SFnm(X), SFnm(f)) |
title_full |
Dynamic properties of the dynamical system SFnm(X), SFnm(f)) |
title_fullStr |
Dynamic properties of the dynamical system SFnm(X), SFnm(f)) |
title_full_unstemmed |
Dynamic properties of the dynamical system SFnm(X), SFnm(f)) |
title_sort |
dynamic properties of the dynamical system sfnm(x), sfnm(f)) |
publisher |
Universitat Politècnica de València |
series |
Applied General Topology |
issn |
1576-9402 1989-4147 |
publishDate |
2020-04-01 |
description |
Let X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) : SFnm(X) → SFnm(X). In this paper, we introduce the dynamical system (SFnm(X), SFnm (f)) and we investigate some relationships between the dynamical systems (X, f), (Fn(X), Fn(f)), (SFn(X), SFn(f)) and (SFnm(X), SFnm(f)) when these systems are: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, irreducible, feebly open and turbulent. |
topic |
chaotic continuum dynamical system exact feebly open hyperspace induced map irreducible mixing strongly transitive symmetric product symmetric product suspension totally transitive transitive turbulent weakly mixing |
url |
https://polipapers.upv.es/index.php/AGT/article/view/11807 |
work_keys_str_mv |
AT francobarragan dynamicpropertiesofthedynamicalsystemsfnmxsfnmf AT aliciasantiagosantos dynamicpropertiesofthedynamicalsystemsfnmxsfnmf AT jesusftenorio dynamicpropertiesofthedynamicalsystemsfnmxsfnmf |
_version_ |
1724933268467351552 |