Active spacecraft potential control for Cluster – implementation and first results

Electrostatic charging of a spacecraft modifies the distribution of electrons and ions before the particles enter the sensors mounted on the spacecraft body. The floating potential of magnetospheric satellites in sunlight very often reaches several tens of volts, making measurements of the c...

Full description

Bibliographic Details
Main Authors: K. Torkar, W. Riedler, C. P. Escoubet, M. Fehringer, R. Schmidt, R. J. L. Grard, H. Arends, F. Rüdenauer, W. Steiger, B. T. Narheim, K. Svenes, R. Torbert, M. André, A. Fazakerley, R. Goldstein, R. C. Olsen, A. Pedersen, E. Whipple, H. Zhao
Format: Article
Language:English
Published: Copernicus Publications 2001-09-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/19/1289/2001/angeo-19-1289-2001.pdf
Description
Summary:Electrostatic charging of a spacecraft modifies the distribution of electrons and ions before the particles enter the sensors mounted on the spacecraft body. The floating potential of magnetospheric satellites in sunlight very often reaches several tens of volts, making measurements of the cold (several eV) component of the ambient ions impossible. The plasma electron data become contaminated by large fluxes of photoelectrons attracted back into the sensors. The Cluster spacecraft are equipped with emitters of the liquid metal ion source type, producing indium ions at 5 to 9 keV energy at currents of some tens of microampere. This current shifts the equilibrium potential of the spacecraft to moderately positive values. The design and principles of the operation of the instrument for active spacecraft potential control (ASPOC) are presented in detail. Experience with spacecraft potential control from the commissioning phase and the first two months of the operational phase are now available. The instrument is operated with constant ion current for most of the time, but tests have been carried out with varying currents and a "feedback" mode with the instrument EFW, which measures the spacecraft potential . That has been reduced to values according to expectations. In addition, the low energy electron measurements show substantially reduced fluxes of photoelectrons as expected. The flux decrease in photoelectrons returning to the spacecraft, however, occurs at the expense of an enlarged sheath around the spacecraft which causes problems for boom-mounted probes.<br><br><b>Key words. </b>Space plasma physics (spacecraft sheaths, wakes, charging); Instruments and techniques; Active perturbation experiments
ISSN:0992-7689
1432-0576