Summary: | The paper describes how the process parameters affects the mechanical characteristics of laser selective sintered (SLS) parts used in applications of medical, automotive and aerospace fields. The greatest advantage of the additive manufacturing (AM) technology in the medical field is that it allows the use of the patient's medical CT images to obtain specific implants, providing high benefits for both patients and physicians. Despite its increasing use and advantages, the AM process has a series of problemssuch as: the difficulty in obtaining quality part, process interruption or manufacturing part failure. As such, there have been developed experimental researches in order to establish a correlation between the process parameters and the finished part properties. For this analysis, PA 2200 polyamide specimenswere obtained by SLS and subjected to tensile tests. The results correlate the process parameters, providing proof that the tensile properties of SLS specimen are dependent of orientation, position and preheating temperature. Based on the correlation between the process parameters and properties of the PA2200 polyamide, this paper provides a better understanding of the AM process and allows an anticipation onthe best parameters to be used on different parts, leading the optimizing of component properties for medical applications.
|