Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor

Nanoporous activated carbon material was produced from the waste rice husks (RHs) by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1....

Full description

Bibliographic Details
Main Authors: Huaxing Xu, Biao Gao, Hao Cao, Xueyang Chen, Ling Yu, Kai Wu, Lan Sun, Xiang Peng, Jijiang Fu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2014/714010
Description
Summary:Nanoporous activated carbon material was produced from the waste rice husks (RHs) by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1 at the current density of 1 A g−1 and remains 80% for 198 F g−1 at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.
ISSN:1687-4110
1687-4129