Porosity Elimination in Modified Direct Laser Joining of Ti6Al4V and Thermoplastics Composites

Hybrid lightweight components with strong and reliable bonding qualities are necessary for practical applications including in the automotive and aerospace industries. The direct laser joining method has been used to produce hybrid joints of Ti6Al4V and glass fiber reinforced polyamide (PA66-GF30)....

Full description

Bibliographic Details
Main Authors: Haipeng Wang, Yang Chen, Zaoyang Guo, Yingchun Guan
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/3/411
Description
Summary:Hybrid lightweight components with strong and reliable bonding qualities are necessary for practical applications including in the automotive and aerospace industries. The direct laser joining method has been used to produce hybrid joints of Ti6Al4V and glass fiber reinforced polyamide (PA66-GF30). Prior to the laser joining process, a surface texturing treatment is carried out on Ti6Al4V to improve joint strength through the formation of interlock structures between Ti6Al4V and PA66-GF30. In order to reduce the generated micro-pores in Ti6Al4V-PA66-GF30 joints, a modified laser joining method has been proposed. Results show that only very few small micro-pores are generated in the joints produced by the modified laser joining method, and the fracture strength of the joints is significantly increased from 13.8 MPa to 41.5 MPa due to the elimination of micro-pores in the joints.
ISSN:2076-3417