C7-Decompositions of the Tensor Product of Complete Graphs

In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1) either m or n is odd and (2) 14 | m(m − 1)n(n − 1). The results of this p...

Full description

Bibliographic Details
Main Authors: Manikandan R.S., Paulraja P.
Format: Article
Language:English
Published: Sciendo 2017-08-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1936
Description
Summary:In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1) either m or n is odd and (2) 14 | m(m − 1)n(n − 1). The results of this paper together with the results of [Cp-Decompositions of some regular graphs, Discrete Math. 306 (2006) 429–451] and [C5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics 37 (2007) 285–293], give necessary and sufficient conditions for the existence of a p-cycle decomposition, where p ≥ 5 is a prime number, of the graph Km × Kn.
ISSN:2083-5892