A Dual-Functional [SBA-15/Fe3O4/P(N-iPAAm)] Hybrid System as a Potential Nanoplatform for Biomedical Application

The synthesis strategy of a multifunctional system of [SBA-15/Fe3O4/P(N-iPAAm)] hybrids of interest for bioapplications was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functio...

Full description

Bibliographic Details
Main Authors: Andreza de Sousa, Karynne Cristina de Souza, Paula Maria da Silva Leite, Ricardo Geraldo de Sousa, Edésia Martins Barros de Sousa
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2014/293624
Description
Summary:The synthesis strategy of a multifunctional system of [SBA-15/Fe3O4/P(N-iPAAm)] hybrids of interest for bioapplications was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functionalization method. Monomer adsorption followed by in situ polymerization initiated by a radical was the adopted procedure to incorporate the hydrogel into the pore channels of silica nanocomposite. Characterization of the materials was carried out by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption, transmission electron microscopy (TEM), and Temperature programmed reduction studies (TPR). Their application as drug delivery system using atenolol as a model drug to assess the influence of the application of low frequency alternating magnetic fields on drug release was evaluated. The structural characteristics of the magnetic hybrid nanocomposite, including the effect of the swelling behavior on heating by the application of an alternating magnetic field, are presented and discussed.
ISSN:1687-4110
1687-4129