Quasilinearization and multiple solutions of the Emden‐Fowler type equation

Existence and multiplicity of solutions of the problem x” = ‐q(t) |x|p sign x (i), x(0) = x(1) = 0 (ii) are investigated by reducing equation (i) to a quasi‐linear one so that both equations are equivalent in some domain O. If a solution of corresponding quasi‐linear problem is located in the dom...

Full description

Bibliographic Details
Main Authors: I. Yermachenko, F. Sadyrbaev
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2005-03-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9661
id doaj-3c097c1291d34b029939b4df33d25c8e
record_format Article
spelling doaj-3c097c1291d34b029939b4df33d25c8e2021-07-02T14:02:28ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102005-03-0110110.3846/13926292.2005.9637269Quasilinearization and multiple solutions of the Emden‐Fowler type equationI. Yermachenko0F. Sadyrbaev1Daugavpils University , Parades str. 1, Daugavpils, LatviaInstitute of Mathematics and Computer Science , University of Latvia , Rainis bl. 29, Riga, Latvia Existence and multiplicity of solutions of the problem x” = ‐q(t) |x|p sign x (i), x(0) = x(1) = 0 (ii) are investigated by reducing equation (i) to a quasi‐linear one so that both equations are equivalent in some domain O. If a solution of corresponding quasi‐linear problem is located in the domain of equivalence O, then this solution solves the original problem also. If this process of quasilinearization is possible for multiple essentially different linear parts, then multiple solutions to the problem (i), (ii) exist. Darbe nagrinejamas taip vadinamas Emdeno‐Faulerio kvazitiesines diferencialines lygties homogeninio kraštinio uždavinio sprendiniu egzistavimas ir daugialypumas. Parodyta, kad šio uždavinio sprendinio daugialypumas priklauso nuo tam tikru būdu gautos kvazilinearizuotos lygties tiesines dalies savybiu. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9661quasi‐linear equationi‐nonresonant linear parti‐type solutionquasi‐linearization
collection DOAJ
language English
format Article
sources DOAJ
author I. Yermachenko
F. Sadyrbaev
spellingShingle I. Yermachenko
F. Sadyrbaev
Quasilinearization and multiple solutions of the Emden‐Fowler type equation
Mathematical Modelling and Analysis
quasi‐linear equation
i‐nonresonant linear part
i‐type solution
quasi‐linearization
author_facet I. Yermachenko
F. Sadyrbaev
author_sort I. Yermachenko
title Quasilinearization and multiple solutions of the Emden‐Fowler type equation
title_short Quasilinearization and multiple solutions of the Emden‐Fowler type equation
title_full Quasilinearization and multiple solutions of the Emden‐Fowler type equation
title_fullStr Quasilinearization and multiple solutions of the Emden‐Fowler type equation
title_full_unstemmed Quasilinearization and multiple solutions of the Emden‐Fowler type equation
title_sort quasilinearization and multiple solutions of the emden‐fowler type equation
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2005-03-01
description Existence and multiplicity of solutions of the problem x” = ‐q(t) |x|p sign x (i), x(0) = x(1) = 0 (ii) are investigated by reducing equation (i) to a quasi‐linear one so that both equations are equivalent in some domain O. If a solution of corresponding quasi‐linear problem is located in the domain of equivalence O, then this solution solves the original problem also. If this process of quasilinearization is possible for multiple essentially different linear parts, then multiple solutions to the problem (i), (ii) exist. Darbe nagrinejamas taip vadinamas Emdeno‐Faulerio kvazitiesines diferencialines lygties homogeninio kraštinio uždavinio sprendiniu egzistavimas ir daugialypumas. Parodyta, kad šio uždavinio sprendinio daugialypumas priklauso nuo tam tikru būdu gautos kvazilinearizuotos lygties tiesines dalies savybiu. First Published Online: 14 Oct 2010
topic quasi‐linear equation
i‐nonresonant linear part
i‐type solution
quasi‐linearization
url https://journals.vgtu.lt/index.php/MMA/article/view/9661
work_keys_str_mv AT iyermachenko quasilinearizationandmultiplesolutionsoftheemdenfowlertypeequation
AT fsadyrbaev quasilinearizationandmultiplesolutionsoftheemdenfowlertypeequation
_version_ 1721328378110279680