Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator

Let<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (a...

Full description

Bibliographic Details
Main Authors: Manuel Aguirre Téllez, Rubén Alejandro Cerutti
Format: Article
Language:English
Published: Università degli Studi di Catania 1997-11-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413
id doaj-3becade6035049398c48065a45552411
record_format Article
spelling doaj-3becade6035049398c48065a455524112020-11-25T03:41:43ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522345356385Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operatorManuel Aguirre TéllezRubén Alejandro CeruttiLet<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (anticausal) Bessel derivative of order α defined by <em>D^α_C f = G_{−α} ( P − i0, m, n) ∗ f , D^α_A f =G_{−α} ( P + i0, m, n) ∗ f</em> . In this note we give a sense to several relations of type:<br />                             <em> B^α_C (B^β_ A f ) + B^α_A (B^β_C f ),</em><br /><br />                              <em> D^ α_C (D^β_ A f ) + D^α_A (D^β_C f ),</em><br />                               <br />                                              .  .  .<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413
collection DOAJ
language English
format Article
sources DOAJ
author Manuel Aguirre Téllez
Rubén Alejandro Cerutti
spellingShingle Manuel Aguirre Téllez
Rubén Alejandro Cerutti
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
Le Matematiche
author_facet Manuel Aguirre Téllez
Rubén Alejandro Cerutti
author_sort Manuel Aguirre Téllez
title Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
title_short Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
title_full Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
title_fullStr Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
title_full_unstemmed Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
title_sort causal (anticausal) bessel derivative and the ultrahyperbolic bessel operator
publisher Università degli Studi di Catania
series Le Matematiche
issn 0373-3505
2037-5298
publishDate 1997-11-01
description Let<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (anticausal) Bessel derivative of order α defined by <em>D^α_C f = G_{−α} ( P − i0, m, n) ∗ f , D^α_A f =G_{−α} ( P + i0, m, n) ∗ f</em> . In this note we give a sense to several relations of type:<br />                             <em> B^α_C (B^β_ A f ) + B^α_A (B^β_C f ),</em><br /><br />                              <em> D^ α_C (D^β_ A f ) + D^α_A (D^β_C f ),</em><br />                               <br />                                              .  .  .<br />
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413
work_keys_str_mv AT manuelaguirretellez causalanticausalbesselderivativeandtheultrahyperbolicbesseloperator
AT rubenalejandrocerutti causalanticausalbesselderivativeandtheultrahyperbolicbesseloperator
_version_ 1724528722381373440