Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator
Let<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1997-11-01
|
Series: | Le Matematiche |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413 |
id |
doaj-3becade6035049398c48065a45552411 |
---|---|
record_format |
Article |
spelling |
doaj-3becade6035049398c48065a455524112020-11-25T03:41:43ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522345356385Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operatorManuel Aguirre TéllezRubén Alejandro CeruttiLet<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (anticausal) Bessel derivative of order α defined by <em>D^α_C f = G_{−α} ( P − i0, m, n) ∗ f , D^α_A f =G_{−α} ( P + i0, m, n) ∗ f</em> . In this note we give a sense to several relations of type:<br /> <em> B^α_C (B^β_ A f ) + B^α_A (B^β_C f ),</em><br /><br /> <em> D^ α_C (D^β_ A f ) + D^α_A (D^β_C f ),</em><br /> <br /> . . .<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Manuel Aguirre Téllez Rubén Alejandro Cerutti |
spellingShingle |
Manuel Aguirre Téllez Rubén Alejandro Cerutti Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator Le Matematiche |
author_facet |
Manuel Aguirre Téllez Rubén Alejandro Cerutti |
author_sort |
Manuel Aguirre Téllez |
title |
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator |
title_short |
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator |
title_full |
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator |
title_fullStr |
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator |
title_full_unstemmed |
Causal (anticausal) Bessel derivative and the ultrahyperbolic Bessel operator |
title_sort |
causal (anticausal) bessel derivative and the ultrahyperbolic bessel operator |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
1997-11-01 |
description |
Let<em> B^α_C</em> and<em> B^α_A</em> be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by<em> B^α_C</em> f <em>= G_α ( P + i0, m, n) ∗ f , B^α f = G_α ( P −i0, m, n) ∗ f and let D^α_C and D^α_A</em> be generalized causal (anticausal) Bessel derivative of order α defined by <em>D^α_C f = G_{−α} ( P − i0, m, n) ∗ f , D^α_A f =G_{−α} ( P + i0, m, n) ∗ f</em> . In this note we give a sense to several relations of type:<br /> <em> B^α_C (B^β_ A f ) + B^α_A (B^β_C f ),</em><br /><br /> <em> D^ α_C (D^β_ A f ) + D^α_A (D^β_C f ),</em><br /> <br /> . . .<br /> |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/413 |
work_keys_str_mv |
AT manuelaguirretellez causalanticausalbesselderivativeandtheultrahyperbolicbesseloperator AT rubenalejandrocerutti causalanticausalbesselderivativeandtheultrahyperbolicbesseloperator |
_version_ |
1724528722381373440 |