Krasnoselskii–Mann Viscosity Approximation Method for Nonexpansive Mappings
We show that the viscosity approximation method coupled with the Krasnoselskii–Mann iteration generates a sequence that strongly converges to a fixed point of a given nonexpansive mapping in the setting of uniformly smooth Banach spaces. Our result shows that the geometric property (i.e., uniform sm...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/7/1153 |
Summary: | We show that the viscosity approximation method coupled with the Krasnoselskii–Mann iteration generates a sequence that strongly converges to a fixed point of a given nonexpansive mapping in the setting of uniformly smooth Banach spaces. Our result shows that the geometric property (i.e., uniform smoothness) of the underlying space plays a role in relaxing the conditions on the choice of regularization parameters and step sizes in iterative methods. |
---|---|
ISSN: | 2227-7390 |