Digitally Programmable Analogue Circuits for Sensor Conditioning Systems
This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectu...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2009-05-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/9/5/3652/ |
id |
doaj-3bb99e0c1ff84d1da5522c3ea6401f63 |
---|---|
record_format |
Article |
spelling |
doaj-3bb99e0c1ff84d1da5522c3ea6401f632020-11-25T00:03:44ZengMDPI AGSensors1424-82202009-05-01953652366510.3390/s90503652Digitally Programmable Analogue Circuits for Sensor Conditioning SystemsSantiago CelmaBelén CalvoConcepción AldeaMaría Teresa SanzNicolás MedranoGuillermo ZatorreThis work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 mm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components. http://www.mdpi.com/1424-8220/9/5/3652/sensor readout circuitselectronics for sensor conditioningneural networks circuits |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Santiago Celma Belén Calvo Concepción Aldea María Teresa Sanz Nicolás Medrano Guillermo Zatorre |
spellingShingle |
Santiago Celma Belén Calvo Concepción Aldea María Teresa Sanz Nicolás Medrano Guillermo Zatorre Digitally Programmable Analogue Circuits for Sensor Conditioning Systems Sensors sensor readout circuits electronics for sensor conditioning neural networks circuits |
author_facet |
Santiago Celma Belén Calvo Concepción Aldea María Teresa Sanz Nicolás Medrano Guillermo Zatorre |
author_sort |
Santiago Celma |
title |
Digitally Programmable Analogue Circuits for Sensor Conditioning Systems |
title_short |
Digitally Programmable Analogue Circuits for Sensor Conditioning Systems |
title_full |
Digitally Programmable Analogue Circuits for Sensor Conditioning Systems |
title_fullStr |
Digitally Programmable Analogue Circuits for Sensor Conditioning Systems |
title_full_unstemmed |
Digitally Programmable Analogue Circuits for Sensor Conditioning Systems |
title_sort |
digitally programmable analogue circuits for sensor conditioning systems |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2009-05-01 |
description |
This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 mm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components. |
topic |
sensor readout circuits electronics for sensor conditioning neural networks circuits |
url |
http://www.mdpi.com/1424-8220/9/5/3652/ |
work_keys_str_mv |
AT santiagocelma digitallyprogrammableanaloguecircuitsforsensorconditioningsystems AT belencalvo digitallyprogrammableanaloguecircuitsforsensorconditioningsystems AT concepcionaldea digitallyprogrammableanaloguecircuitsforsensorconditioningsystems AT mariateresasanz digitallyprogrammableanaloguecircuitsforsensorconditioningsystems AT nicolasmedrano digitallyprogrammableanaloguecircuitsforsensorconditioningsystems AT guillermozatorre digitallyprogrammableanaloguecircuitsforsensorconditioningsystems |
_version_ |
1725432309737324544 |