Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling

Nourhan Hisham Shady,1 Amira R Khattab,2 Safwat Ahmed,3 Miaomiao Liu,4 Ronald J Quinn,4 Mostafa A Fouad,5 Mohamed Salah Kamel,5 Abdullatif Bin Muhsinah,6 Markus Krischke,7 Martin J Mueller,7 Usama Ramadan Abdelmohsen1,5 1Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universiti...

Full description

Bibliographic Details
Main Authors: Shady NH, Khattab AR, Ahmed S, Liu M, Quinn RJ, Fouad MA, Kamel MS, Muhsinah AB, Krischke M, Mueller MJ, Abdelmohsen UR
Format: Article
Language:English
Published: Dove Medical Press 2020-05-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/hepatitis-c-virus-ns3-protease-and-helicase-inhibitors-from-red-sea-sp-peer-reviewed-article-IJN
id doaj-3babe84dfd864d5e89312744fc628ed9
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Shady NH
Khattab AR
Ahmed S
Liu M
Quinn RJ
Fouad MA
Kamel MS
Muhsinah AB
Krischke M
Mueller MJ
Abdelmohsen UR
spellingShingle Shady NH
Khattab AR
Ahmed S
Liu M
Quinn RJ
Fouad MA
Kamel MS
Muhsinah AB
Krischke M
Mueller MJ
Abdelmohsen UR
Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
International Journal of Nanomedicine
amphimedon
nanoparticles
marine sponge
natural products
hcv helicase
protease
molecular docking
metabolomics.
author_facet Shady NH
Khattab AR
Ahmed S
Liu M
Quinn RJ
Fouad MA
Kamel MS
Muhsinah AB
Krischke M
Mueller MJ
Abdelmohsen UR
author_sort Shady NH
title Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
title_short Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
title_full Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
title_fullStr Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
title_full_unstemmed Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling
title_sort hepatitis c virus ns3 protease and helicase inhibitors from red sea sponge (amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1178-2013
publishDate 2020-05-01
description Nourhan Hisham Shady,1 Amira R Khattab,2 Safwat Ahmed,3 Miaomiao Liu,4 Ronald J Quinn,4 Mostafa A Fouad,5 Mohamed Salah Kamel,5 Abdullatif Bin Muhsinah,6 Markus Krischke,7 Martin J Mueller,7 Usama Ramadan Abdelmohsen1,5 1Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, Minia 61111, Egypt; 2Department of Pharmacognosy, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt; 3Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt 41522; 4Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; 5Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; 7Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg 97082, GermanyCorrespondence: Martin J Mueller; Usama Ramadan Abdelmohsen Tel +49 9313186160; +20 86-2347759Fax +49 9313186182; +20 86-2369075Email martin.mueller@biozentrum.uni-wuerzburg.de; usama.ramadan@mu.edu.egBackground: Hepatitis C virus (HCV) infection is a major cause of hepatic diseases all over the world. This necessitates the need to discover novel anti-HCV drugs to overcome emerging drug resistance and liver complications.Purpose: Total extract and petroleum ether fraction of the marine sponge (Amphimedon spp.) were used for silver nanoparticle (SNP) synthesis to explore their HCV NS3 helicase- and protease-inhibitory potential.Methods: Characterization of the prepared SNPs was carried out with ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The metabolomic profile of different Amphimedon fractions was assessed using liquid chromatography coupled with high-resolution mass spectrometry. Fourteen known compounds were isolated and their HCV helicase and protease activities assessed using in silico modeling of their interaction with both HCV protease and helicase enzymes to reveal their anti-HCV mechanism of action. In vitro anti-HCV activity against HCV NS3 helicase and protease was then conducted to validate the computation results and compared to that of the SNPs.Results: Transmission electron–microscopy analysis of NPs prepared from Amphimedon total extract and petroleum ether revealed particle sizes of 8.22– 14.30 nm and 8.22– 9.97 nm, and absorption bands at λmax of 450 and 415 nm, respectively. Metabolomic profiling revealed the richness of Amphimedon spp. with different phytochemical classes. Bioassay-guided isolation resulted in the isolation of 14 known compounds with anti-HCV activity, initially revealed by docking studies. In vitro anti–HCV NS3 helicase and protease assays of both isolated compounds and NPs further confirmed the computational results.Conclusion: Our findings indicate that Amphimedon, total extract, petroleum ether fraction, and derived NPs are promising biosources for providing anti-HCV drug candidates, with nakinadine B and 3,4-dihydro-6-hydroxymanzamine A the most potent anti-HCV agents, possessing good oral bioavailability and penetration power.Keywords: Amphimedon, nanoparticles, marine sponge, natural products, HCV helicase, protease, molecular docking, metabolomics
topic amphimedon
nanoparticles
marine sponge
natural products
hcv helicase
protease
molecular docking
metabolomics.
url https://www.dovepress.com/hepatitis-c-virus-ns3-protease-and-helicase-inhibitors-from-red-sea-sp-peer-reviewed-article-IJN
work_keys_str_mv AT shadynh hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT khattabar hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT ahmeds hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT lium hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT quinnrj hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT fouadma hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT kamelms hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT muhsinahab hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT krischkem hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT muellermj hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
AT abdelmohsenur hepatitiscvirusns3proteaseandhelicaseinhibitorsfromredseaspongeamphimedonspeciesingreensynthesizedsilvernanoparticlesassistedbyinsilicomodelingandmetabolicprofiling
_version_ 1724787300320149504
spelling doaj-3babe84dfd864d5e89312744fc628ed92020-11-25T02:39:16ZengDove Medical PressInternational Journal of Nanomedicine1178-20132020-05-01Volume 153377338953685Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic ProfilingShady NHKhattab ARAhmed SLiu MQuinn RJFouad MAKamel MSMuhsinah ABKrischke MMueller MJAbdelmohsen URNourhan Hisham Shady,1 Amira R Khattab,2 Safwat Ahmed,3 Miaomiao Liu,4 Ronald J Quinn,4 Mostafa A Fouad,5 Mohamed Salah Kamel,5 Abdullatif Bin Muhsinah,6 Markus Krischke,7 Martin J Mueller,7 Usama Ramadan Abdelmohsen1,5 1Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, Minia 61111, Egypt; 2Department of Pharmacognosy, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt; 3Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt 41522; 4Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; 5Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; 7Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg 97082, GermanyCorrespondence: Martin J Mueller; Usama Ramadan Abdelmohsen Tel +49 9313186160; +20 86-2347759Fax +49 9313186182; +20 86-2369075Email martin.mueller@biozentrum.uni-wuerzburg.de; usama.ramadan@mu.edu.egBackground: Hepatitis C virus (HCV) infection is a major cause of hepatic diseases all over the world. This necessitates the need to discover novel anti-HCV drugs to overcome emerging drug resistance and liver complications.Purpose: Total extract and petroleum ether fraction of the marine sponge (Amphimedon spp.) were used for silver nanoparticle (SNP) synthesis to explore their HCV NS3 helicase- and protease-inhibitory potential.Methods: Characterization of the prepared SNPs was carried out with ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The metabolomic profile of different Amphimedon fractions was assessed using liquid chromatography coupled with high-resolution mass spectrometry. Fourteen known compounds were isolated and their HCV helicase and protease activities assessed using in silico modeling of their interaction with both HCV protease and helicase enzymes to reveal their anti-HCV mechanism of action. In vitro anti-HCV activity against HCV NS3 helicase and protease was then conducted to validate the computation results and compared to that of the SNPs.Results: Transmission electron–microscopy analysis of NPs prepared from Amphimedon total extract and petroleum ether revealed particle sizes of 8.22– 14.30 nm and 8.22– 9.97 nm, and absorption bands at λmax of 450 and 415 nm, respectively. Metabolomic profiling revealed the richness of Amphimedon spp. with different phytochemical classes. Bioassay-guided isolation resulted in the isolation of 14 known compounds with anti-HCV activity, initially revealed by docking studies. In vitro anti–HCV NS3 helicase and protease assays of both isolated compounds and NPs further confirmed the computational results.Conclusion: Our findings indicate that Amphimedon, total extract, petroleum ether fraction, and derived NPs are promising biosources for providing anti-HCV drug candidates, with nakinadine B and 3,4-dihydro-6-hydroxymanzamine A the most potent anti-HCV agents, possessing good oral bioavailability and penetration power.Keywords: Amphimedon, nanoparticles, marine sponge, natural products, HCV helicase, protease, molecular docking, metabolomicshttps://www.dovepress.com/hepatitis-c-virus-ns3-protease-and-helicase-inhibitors-from-red-sea-sp-peer-reviewed-article-IJNamphimedonnanoparticlesmarine spongenatural productshcv helicaseproteasemolecular dockingmetabolomics.