Biharmonic Hypersurfaces in Pseudo-Riemannian Space Forms with at Most Two Distinct Principal Curvatures

In this paper, we show that biharmonic hypersurfaces with at most two distinct principal curvatures in pseudo-Riemannian space form Nsn+1c with constant sectional curvature c and index s have constant mean curvature. Furthermore, we find that such biharmonic hypersurfaces Mr2k−1 in even-dimensional...

Full description

Bibliographic Details
Main Authors: Chao Yang, Jiancheng Liu
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/2182975
Description
Summary:In this paper, we show that biharmonic hypersurfaces with at most two distinct principal curvatures in pseudo-Riemannian space form Nsn+1c with constant sectional curvature c and index s have constant mean curvature. Furthermore, we find that such biharmonic hypersurfaces Mr2k−1 in even-dimensional pseudo-Euclidean space Es2k, Ms−12k−1 in even-dimensional de Sitter space Ss2kcc>0, and Ms2k−1 in even-dimensional anti-de Sitter space ℍs2kcc<0 are minimal.
ISSN:2314-8896
2314-8888