A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions

Over the last decade, particular interest in using state-of-the-art emerging technologies for inspection, assessment, and management of civil infrastructures has remarkably increased. Advanced technologies, such as laser scanners, have become a suitable alternative for labor intensive, expensive, an...

Full description

Bibliographic Details
Main Authors: Maria Rashidi, Masoud Mohammadi, Saba Sadeghlou Kivi, Mohammad Mehdi Abdolvand, Linh Truong-Hong, Bijan Samali
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/22/3796
Description
Summary:Over the last decade, particular interest in using state-of-the-art emerging technologies for inspection, assessment, and management of civil infrastructures has remarkably increased. Advanced technologies, such as laser scanners, have become a suitable alternative for labor intensive, expensive, and unsafe traditional inspection and maintenance methods, which encourage the increasing use of this technology in construction industry, especially in bridges. This paper aims to provide a thorough mixed scientometric and state-of-the-art review on the application of terrestrial laser scanners (TLS) in bridge engineering and explore investigations and recommendations of researchers in this area. Following the review, more than 1500 research publications were collected, investigated and analyzed through a two-fold literature search published within the last decade from 2010 to 2020. Research trends, consisting of dominated sub-fields, co-occurrence of keywords, network of researchers and their institutions, along with the interaction of research networks, were quantitatively analyzed. Moreover, based on the collected papers, application of TLS in bridge engineering and asset management was reviewed according to four categories including (1) generation of 3D model, (2) quality inspection, (3) structural assessment, and (4) bridge information modeling (BrIM). Finally, the paper identifies the current research gaps, future directions obtained from the quantitative analysis, and in-depth discussions of the collected papers in this area.
ISSN:2072-4292