Summary: | Due to corrosion damages, petrochemical industry invests millions of dollars in the mitigation of this problem, which is presented basically in equipment and metal pipes, both externally and internally. A possible solution to the different consequences caused by corrosion is the use of green corrosion inhibitors. In the present research project, the inhibition capacity of the eugenol, o-eugenol and diphenol, on AISI 1020 carbon steel exposed to a 1M HCl acid medium is evaluated. Hence, the corrosion rate of the material in solutions with and without green corrosion inhibitor was calculated under the influence of two operating variables: temperature and immersion time; applying techniques such as Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization. In addition, the surface of AISI-1020 carbon steel was characterized by Scanning Electron Microscopy (SEM) in combination with Energy Dispersive X-ray Spectroscopy (EDS). Experimental tests show that the diphenol-based inhibitor obtained a corrosion rate inhibition efficiency of96.24 % for AISI 1020 steel, compared to 76.87 % for Eugenol and 71.01 % for o-eugenol. The experimental results have shown that the percentage of inhibition increases as the temperature and immersion time of the electrochemical cell increase in the system, achieving a maximum percentage of inhibition in the corrosion rate of AISI 1020 steel of 92.23 % for a temperature of 80 °C and 6 h of immersion time.
|