Measuring low mercury content in furnace waste, with ALTEC's automatic atomic absorption spectrometer

This article presents the results of comparing mercury content measurements made with the AMA254 automatic atomic absorption spectrometer with measurements obtained using the CVAAS method in a different laboratory. The aim of the article is to show the potential of applying the AMA254 analyzer to me...

Full description

Bibliographic Details
Main Authors: Przemysław Rompalski, Adam Greczichen
Format: Article
Language:English
Published: Central Mining Institute (Główny Instytut Górnictwa) 2018-01-01
Series:Journal of Sustainable Mining
Online Access:http://www.sciencedirect.com/science/article/pii/S2300396018300144
Description
Summary:This article presents the results of comparing mercury content measurements made with the AMA254 automatic atomic absorption spectrometer with measurements obtained using the CVAAS method in a different laboratory. The aim of the article is to show the potential of applying the AMA254 analyzer to measure low mercury content (including trace amounts) without the pre-treatment (mineralization) of the samples. Mercury, as one of the more toxic elements (according to Agency for Toxic Substances and Disease Registry), which is present in hard coal, is the main cause of the problems resulting from the environmental pollution associated with hard coal combustion, as well as storing coal processing waste, such as extractive waste and combustion by-products including slag, ash, and slag-ash mixtures (CBP). Precise measurements of trace mercury content in extractive waste and combustion wastes (CBP) is very important in the context of the act on waste (2008 and 2013), BAT regulations 2016 and new BAT regulations (coming into force by 2021), which introduce more and more rigorous limits on mercury emission into the environment. The AMA254 analyzer performs analysis in a short period of time (approximately 5 min), enables repeatability, is intuitive to use and has very high accuracy and precision (the lower limit of quantification is 0.00001 μg Hg), is an ideal tool for measuring low mercury content in samples of both fuels and coal processing waste. Keywords: Mercury, Hard coal, Furnace waste, Automatic atomic absorption spectrometer
ISSN:2300-3960