Calculation of the surface energy of copper nanowires of different thickness and orientation

The Monte-Carlo lattice method is used to search for the surface structure of crystalline copper nanowires of various orientations. Fragmentation of 3,3 nm thick wires into individual spherical nanoparticles is observed. When a nanowire with an initial orientation along the [100] crystallographic ax...

Full description

Bibliographic Details
Main Authors: V.S. Myasnichenko, A.Yu. Kolosov, D.N. Sokolov, E.M. Davydenkova, N.Yu. Sdobnyakov
Format: Article
Language:Russian
Published: Tver State University 2018-12-01
Series:Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Subjects:
Online Access:https://physchemaspects.ru/archives/2018/fh2018-doi-10-26456-pcascnn-2018-10-477.pdf
Description
Summary:The Monte-Carlo lattice method is used to search for the surface structure of crystalline copper nanowires of various orientations. Fragmentation of 3,3 nm thick wires into individual spherical nanoparticles is observed. When a nanowire with an initial orientation along the [100] crystallographic axis is rotated, its surface energy increases monotonically to a certain value of the angle of rotation, with a further decrease with orientation along the [110] axis. A dependence of the surface energy on the nanowire’s diameter was not revealed.
ISSN:2226-4442
2658-4360