Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome
Staphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-09-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fmicb.2020.01779/full |
id |
doaj-3b6f4f772fc442829d01b52321091b10 |
---|---|
record_format |
Article |
spelling |
doaj-3b6f4f772fc442829d01b52321091b102020-11-25T03:56:55ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2020-09-011110.3389/fmicb.2020.01779556057Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the SurfaceomeBhavana Gangwar0Santosh Kumar1Santosh Kumar2Mahendra P. Darokar3Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, IndiaMolecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, IndiaDepartment of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United StatesMolecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, IndiaStaphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of antimicrobials to reach the etiological agents. It plays an important role in resilient chronic infections which place an unnecessary burden on antibiotics and the associated costs. To combat drug-resistant infection involving biofilm, there is a need to discover potential anti-biofilm agents. In this study, activity of polyphenolic flavonoid glabridin against biofilm formation of methicillin resistant clinical isolates of S. aureus is being reported for the first time. Crystal violet assay and scanning electron microscopy evidences shows that glabridin prevents formation of cells clusters and attachment of methicillin resistant clinical isolate (MRSA 4423) of S. aureus to the surface in a dose dependent manner. Gel free proteomic analysis of biofilm matrix by LC-ESI-QTOF confirmed the existence of several proteins known to be involved in cells adhesion. Furthermore, expression analysis of cell surface proteins revealed that glabridin significantly down regulates an abundance of several surface-associated adhesins including fibronectin binding proteins (FnbA, FnbB), serine-aspartate repeat-containing protein D (SdrD), immunoglobulin-binding protein G (Sbi), and other virulence factors which were induced by extracellular glucose in MRSA 4423. In addition, several moonlighting proteins (proteins with multiple functions) such as translation elongation factors (EF-Tu, EF-G), chaperone protein (DnaK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) were detected on the cell surface wherein their abundance was inversely proportional to surface-associated adhesins. This study clearly suggests that glabridin prevents biofilm formation in S. aureus through modulation of the cell surface proteins.https://www.frontiersin.org/article/10.3389/fmicb.2020.01779/fulladhesinsbiofilmcell surface proteomeglabridinmoonlight proteinsMRSA |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bhavana Gangwar Santosh Kumar Santosh Kumar Mahendra P. Darokar |
spellingShingle |
Bhavana Gangwar Santosh Kumar Santosh Kumar Mahendra P. Darokar Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome Frontiers in Microbiology adhesins biofilm cell surface proteome glabridin moonlight proteins MRSA |
author_facet |
Bhavana Gangwar Santosh Kumar Santosh Kumar Mahendra P. Darokar |
author_sort |
Bhavana Gangwar |
title |
Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome |
title_short |
Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome |
title_full |
Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome |
title_fullStr |
Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome |
title_full_unstemmed |
Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome |
title_sort |
glabridin averts biofilms formation in methicillin-resistant staphylococcus aureus by modulation of the surfaceome |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Microbiology |
issn |
1664-302X |
publishDate |
2020-09-01 |
description |
Staphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of antimicrobials to reach the etiological agents. It plays an important role in resilient chronic infections which place an unnecessary burden on antibiotics and the associated costs. To combat drug-resistant infection involving biofilm, there is a need to discover potential anti-biofilm agents. In this study, activity of polyphenolic flavonoid glabridin against biofilm formation of methicillin resistant clinical isolates of S. aureus is being reported for the first time. Crystal violet assay and scanning electron microscopy evidences shows that glabridin prevents formation of cells clusters and attachment of methicillin resistant clinical isolate (MRSA 4423) of S. aureus to the surface in a dose dependent manner. Gel free proteomic analysis of biofilm matrix by LC-ESI-QTOF confirmed the existence of several proteins known to be involved in cells adhesion. Furthermore, expression analysis of cell surface proteins revealed that glabridin significantly down regulates an abundance of several surface-associated adhesins including fibronectin binding proteins (FnbA, FnbB), serine-aspartate repeat-containing protein D (SdrD), immunoglobulin-binding protein G (Sbi), and other virulence factors which were induced by extracellular glucose in MRSA 4423. In addition, several moonlighting proteins (proteins with multiple functions) such as translation elongation factors (EF-Tu, EF-G), chaperone protein (DnaK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) were detected on the cell surface wherein their abundance was inversely proportional to surface-associated adhesins. This study clearly suggests that glabridin prevents biofilm formation in S. aureus through modulation of the cell surface proteins. |
topic |
adhesins biofilm cell surface proteome glabridin moonlight proteins MRSA |
url |
https://www.frontiersin.org/article/10.3389/fmicb.2020.01779/full |
work_keys_str_mv |
AT bhavanagangwar glabridinavertsbiofilmsformationinmethicillinresistantstaphylococcusaureusbymodulationofthesurfaceome AT santoshkumar glabridinavertsbiofilmsformationinmethicillinresistantstaphylococcusaureusbymodulationofthesurfaceome AT santoshkumar glabridinavertsbiofilmsformationinmethicillinresistantstaphylococcusaureusbymodulationofthesurfaceome AT mahendrapdarokar glabridinavertsbiofilmsformationinmethicillinresistantstaphylococcusaureusbymodulationofthesurfaceome |
_version_ |
1724463059239436288 |