Dynamical origin of the electroweak scale and the 125 GeV scalar

We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to ge...

Full description

Bibliographic Details
Main Authors: Stefano Di Chiara, Roshan Foadi, Kimmo Tuominen, Sara Tähtinen
Format: Article
Language:English
Published: Elsevier 2015-11-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321315003326
Description
Summary:We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments.
ISSN:0550-3213
1873-1562