Real Time 3D Facial Movement Tracking Using a Monocular Camera

The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to...

Full description

Bibliographic Details
Main Authors: Yanchao Dong, Yanming Wang, Jiguang Yue, Zhencheng Hu
Format: Article
Language:English
Published: MDPI AG 2016-07-01
Series:Sensors
Subjects:
HCI
Online Access:http://www.mdpi.com/1424-8220/16/8/1157
Description
Summary:The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.
ISSN:1424-8220