Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study

The histamine H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> receptor (H<sub>2</sub>R) plays an important role in the regulation...

Full description

Bibliographic Details
Main Authors: Marcus Conrad, Christian A. Söldner, Yinglong Miao, Heinrich Sticht
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/18/6693
id doaj-3b5b08f78c9d44f4b20db4bb50b6cd5e
record_format Article
spelling doaj-3b5b08f78c9d44f4b20db4bb50b6cd5e2020-11-25T03:48:07ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672020-09-01216693669310.3390/ijms21186693Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics StudyMarcus Conrad0Christian A. Söldner1Yinglong Miao2Heinrich Sticht3Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, GermanyBioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, GermanyDepartment of Computational Biology and Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USABioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, GermanyThe histamine H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> receptor (H<sub>2</sub>R) plays an important role in the regulation of gastric acid secretion. Therefore, it is a main drug target for the treatment of gastroesophageal reflux or peptic ulcer disease. However, there is as of yet no 3D-structural information available hampering a mechanistic understanding of H<sub>2</sub>R. Therefore, we created a model of the histamine-H<sub>2</sub>R-G<sub>s</sub> complex based on the structure of the ternary complex of the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="sans-serif">β</mi><mn>2</mn></msub></semantics></math></inline-formula>-adrenoceptor and investigated the conformational stability of this active GPCR conformation. Since the physiologically relevant motions with respect to ligand binding and conformational changes of GPCRs can only partly be assessed on the timescale of conventional MD (cMD) simulations, we also applied metadynamics and Gaussian accelerated molecular dynamics (GaMD) simulations. A multiple walker metadynamics simulation in combination with cMD was applied for the determination of the histamine binding mode. The preferential binding pose detected is in good agreement with previous data from site directed mutagenesis and provides a basis for rational ligand design. Inspection of the H<sub>2</sub>R-G<sub>s</sub> interface reveals a network of polar interactions that may contribute to H<sub>2</sub>R coupling selectivity. The cMD and GaMD simulations demonstrate that the active conformation is retained on a <inline-formula><math display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s-timescale in the ternary histamine-H<sub>2</sub>R-G<sub>s</sub> complex and in a truncated complex that contains only G<sub>s</sub> helix <inline-formula><math display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula>5 instead of the entire G protein. In contrast, histamine alone is unable to stabilize the active conformation, which is in line with previous studies of other GPCRs.https://www.mdpi.com/1422-0067/21/18/6693receptor–ligand interactionsG protein-coupled receptors (GPCRs)G<sub>s</sub> proteinternary complexmolecular dynamics simulationsmetadynamics
collection DOAJ
language English
format Article
sources DOAJ
author Marcus Conrad
Christian A. Söldner
Yinglong Miao
Heinrich Sticht
spellingShingle Marcus Conrad
Christian A. Söldner
Yinglong Miao
Heinrich Sticht
Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
International Journal of Molecular Sciences
receptor–ligand interactions
G protein-coupled receptors (GPCRs)
G<sub>s</sub> protein
ternary complex
molecular dynamics simulations
metadynamics
author_facet Marcus Conrad
Christian A. Söldner
Yinglong Miao
Heinrich Sticht
author_sort Marcus Conrad
title Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
title_short Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
title_full Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
title_fullStr Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
title_full_unstemmed Agonist Binding and G Protein Coupling in Histamine H<sub>2</sub> Receptor: A Molecular Dynamics Study
title_sort agonist binding and g protein coupling in histamine h<sub>2</sub> receptor: a molecular dynamics study
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1661-6596
1422-0067
publishDate 2020-09-01
description The histamine H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> receptor (H<sub>2</sub>R) plays an important role in the regulation of gastric acid secretion. Therefore, it is a main drug target for the treatment of gastroesophageal reflux or peptic ulcer disease. However, there is as of yet no 3D-structural information available hampering a mechanistic understanding of H<sub>2</sub>R. Therefore, we created a model of the histamine-H<sub>2</sub>R-G<sub>s</sub> complex based on the structure of the ternary complex of the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="sans-serif">β</mi><mn>2</mn></msub></semantics></math></inline-formula>-adrenoceptor and investigated the conformational stability of this active GPCR conformation. Since the physiologically relevant motions with respect to ligand binding and conformational changes of GPCRs can only partly be assessed on the timescale of conventional MD (cMD) simulations, we also applied metadynamics and Gaussian accelerated molecular dynamics (GaMD) simulations. A multiple walker metadynamics simulation in combination with cMD was applied for the determination of the histamine binding mode. The preferential binding pose detected is in good agreement with previous data from site directed mutagenesis and provides a basis for rational ligand design. Inspection of the H<sub>2</sub>R-G<sub>s</sub> interface reveals a network of polar interactions that may contribute to H<sub>2</sub>R coupling selectivity. The cMD and GaMD simulations demonstrate that the active conformation is retained on a <inline-formula><math display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s-timescale in the ternary histamine-H<sub>2</sub>R-G<sub>s</sub> complex and in a truncated complex that contains only G<sub>s</sub> helix <inline-formula><math display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula>5 instead of the entire G protein. In contrast, histamine alone is unable to stabilize the active conformation, which is in line with previous studies of other GPCRs.
topic receptor–ligand interactions
G protein-coupled receptors (GPCRs)
G<sub>s</sub> protein
ternary complex
molecular dynamics simulations
metadynamics
url https://www.mdpi.com/1422-0067/21/18/6693
work_keys_str_mv AT marcusconrad agonistbindingandgproteincouplinginhistaminehsub2subreceptoramoleculardynamicsstudy
AT christianasoldner agonistbindingandgproteincouplinginhistaminehsub2subreceptoramoleculardynamicsstudy
AT yinglongmiao agonistbindingandgproteincouplinginhistaminehsub2subreceptoramoleculardynamicsstudy
AT heinrichsticht agonistbindingandgproteincouplinginhistaminehsub2subreceptoramoleculardynamicsstudy
_version_ 1724500082811731968