Solvability for fractional order boundary value problems at resonance

<p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.o...

Full description

Bibliographic Details
Main Authors: Hu Zhigang, Liu Wenbin
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Boundary Value Problems
Subjects:
Online Access:http://www.boundaryvalueproblems.com/content/2011/1/20
id doaj-3b5784fd583f414ea679c1c122abad9e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Hu Zhigang
Liu Wenbin
spellingShingle Hu Zhigang
Liu Wenbin
Solvability for fractional order boundary value problems at resonance
Boundary Value Problems
Fractional differential equations
boundary value problems
resonance
coincidence degree theory
author_facet Hu Zhigang
Liu Wenbin
author_sort Hu Zhigang
title Solvability for fractional order boundary value problems at resonance
title_short Solvability for fractional order boundary value problems at resonance
title_full Solvability for fractional order boundary value problems at resonance
title_fullStr Solvability for fractional order boundary value problems at resonance
title_full_unstemmed Solvability for fractional order boundary value problems at resonance
title_sort solvability for fractional order boundary value problems at resonance
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2011-01-01
description <p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable equalrows="false" columnlines="none none none none none none none none none none none none none none none none none none none" equalcolumns="false" class="array"> <m:mtr> <m:mtd class="array" columnalign="center"> <m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>&#8242;</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">&#8243;</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:mi>t</m:mi> <m:mo class="MathClass-rel">&#8712;</m:mo> <m:mrow> <m:mo class="MathClass-open">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">]</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>&#8242;</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">&#8243;</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"/> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:mrow> </m:math> </display-formula> </p> <p>where <inline-formula> <m:math name="1687-2770-2011-20-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> </m:math> </inline-formula> denotes the Caputo fractional differential operator of order <it>&#945;</it>, 2 &lt; <it>&#945; </it>&#8804; 3. A new result on the existence of solutions for above fractional boundary value problem is obtained.</p> <p> <b>Mathematics Subject Classification (2000): </b>34A08, 34B15.</p>
topic Fractional differential equations
boundary value problems
resonance
coincidence degree theory
url http://www.boundaryvalueproblems.com/content/2011/1/20
work_keys_str_mv AT huzhigang solvabilityforfractionalorderboundaryvalueproblemsatresonance
AT liuwenbin solvabilityforfractionalorderboundaryvalueproblemsatresonance
_version_ 1725828786817073152
spelling doaj-3b5784fd583f414ea679c1c122abad9e2020-11-24T22:04:47ZengSpringerOpenBoundary Value Problems1687-27621687-27702011-01-012011120Solvability for fractional order boundary value problems at resonanceHu ZhigangLiu Wenbin<p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable equalrows="false" columnlines="none none none none none none none none none none none none none none none none none none none" equalcolumns="false" class="array"> <m:mtr> <m:mtd class="array" columnalign="center"> <m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>&#8242;</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">&#8243;</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:mi>t</m:mi> <m:mo class="MathClass-rel">&#8712;</m:mo> <m:mrow> <m:mo class="MathClass-open">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">]</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>&#8242;</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">&#8243;</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"/> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:mrow> </m:math> </display-formula> </p> <p>where <inline-formula> <m:math name="1687-2770-2011-20-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> </m:math> </inline-formula> denotes the Caputo fractional differential operator of order <it>&#945;</it>, 2 &lt; <it>&#945; </it>&#8804; 3. A new result on the existence of solutions for above fractional boundary value problem is obtained.</p> <p> <b>Mathematics Subject Classification (2000): </b>34A08, 34B15.</p> http://www.boundaryvalueproblems.com/content/2011/1/20Fractional differential equationsboundary value problemsresonancecoincidence degree theory