Solvability for fractional order boundary value problems at resonance
<p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://www.boundaryvalueproblems.com/content/2011/1/20 |
id |
doaj-3b5784fd583f414ea679c1c122abad9e |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hu Zhigang Liu Wenbin |
spellingShingle |
Hu Zhigang Liu Wenbin Solvability for fractional order boundary value problems at resonance Boundary Value Problems Fractional differential equations boundary value problems resonance coincidence degree theory |
author_facet |
Hu Zhigang Liu Wenbin |
author_sort |
Hu Zhigang |
title |
Solvability for fractional order boundary value problems at resonance |
title_short |
Solvability for fractional order boundary value problems at resonance |
title_full |
Solvability for fractional order boundary value problems at resonance |
title_fullStr |
Solvability for fractional order boundary value problems at resonance |
title_full_unstemmed |
Solvability for fractional order boundary value problems at resonance |
title_sort |
solvability for fractional order boundary value problems at resonance |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable equalrows="false" columnlines="none none none none none none none none none none none none none none none none none none none" equalcolumns="false" class="array"> <m:mtr> <m:mtd class="array" columnalign="center"> <m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>′</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:mi>t</m:mi> <m:mo class="MathClass-rel">∈</m:mo> <m:mrow> <m:mo class="MathClass-open">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">]</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>′</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"/> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:mrow> </m:math> </display-formula> </p> <p>where <inline-formula> <m:math name="1687-2770-2011-20-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> </m:math> </inline-formula> denotes the Caputo fractional differential operator of order <it>α</it>, 2 < <it>α </it>≤ 3. A new result on the existence of solutions for above fractional boundary value problem is obtained.</p> <p> <b>Mathematics Subject Classification (2000): </b>34A08, 34B15.</p> |
topic |
Fractional differential equations boundary value problems resonance coincidence degree theory |
url |
http://www.boundaryvalueproblems.com/content/2011/1/20 |
work_keys_str_mv |
AT huzhigang solvabilityforfractionalorderboundaryvalueproblemsatresonance AT liuwenbin solvabilityforfractionalorderboundaryvalueproblemsatresonance |
_version_ |
1725828786817073152 |
spelling |
doaj-3b5784fd583f414ea679c1c122abad9e2020-11-24T22:04:47ZengSpringerOpenBoundary Value Problems1687-27621687-27702011-01-012011120Solvability for fractional order boundary value problems at resonanceHu ZhigangLiu Wenbin<p>Abstract</p> <p>In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation</p> <p> <display-formula> <m:math name="1687-2770-2011-20-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable equalrows="false" columnlines="none none none none none none none none none none none none none none none none none none none" equalcolumns="false" class="array"> <m:mtr> <m:mtd class="array" columnalign="center"> <m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>′</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:mi>t</m:mi> <m:mo class="MathClass-rel">∈</m:mo> <m:mrow> <m:mo class="MathClass-open">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">]</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>x</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> <m:mtd class="array" columnalign="center"> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>′</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mo class="MathClass-op">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"/> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:mrow> </m:math> </display-formula> </p> <p>where <inline-formula> <m:math name="1687-2770-2011-20-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> </m:math> </inline-formula> denotes the Caputo fractional differential operator of order <it>α</it>, 2 < <it>α </it>≤ 3. A new result on the existence of solutions for above fractional boundary value problem is obtained.</p> <p> <b>Mathematics Subject Classification (2000): </b>34A08, 34B15.</p> http://www.boundaryvalueproblems.com/content/2011/1/20Fractional differential equationsboundary value problemsresonancecoincidence degree theory |