Exhaustive Security System Based on Face Recognition Incorporated with Number Plate Identification using Optical Character Recognition
In recent times due to rise in terrorism, people need to live in a safer place where unidentified persons will not be allowed to enter in the premises. Securing of major areas is a vital issue that needs to be addressed for the intelligence and security agencies. At the surrounding of premises, CCTV...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mehran University of Engineering and Technology
2020-01-01
|
Series: | Mehran University Research Journal of Engineering and Technology |
Online Access: | https://publications.muet.edu.pk/index.php/muetrj/article/view/1418 |
Summary: | In recent times due to rise in terrorism, people need to live in a safer place where unidentified persons will not be allowed to enter in the premises. Securing of major areas is a vital issue that needs to be addressed for the intelligence and security agencies. At the surrounding of premises, CCTV (CloseCircuit Television) cameras are usually installed to identify the number plate from database by using OCR (Optical Character Recognition) algorithm. This method of security by identifying only vehicle without verifying the person inside it is usually causing serious security issues. Identification of a person is usually done through image processing by using Viola Jones algorithm and acquire the information of the facial components to create a dataset for machine learning. It is imperative to introduce such a system that will be capable to identify the person along with the number plate of vehicle from the stored database. In this research, a comprehensive security system based on face recognition integrated with the vehicle number plate is proposed. The combined information of both dedicated cameras is then transferred to the based station for identification. This system is capable, of securing premises from crime in a more enhanced way. |
---|---|
ISSN: | 0254-7821 2413-7219 |