Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture
3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/14/12/24212 |
id |
doaj-3b2339ad7f1244d2adc3b7aa43f4e121 |
---|---|
record_format |
Article |
spelling |
doaj-3b2339ad7f1244d2adc3b7aa43f4e1212020-11-25T01:30:36ZengMDPI AGSensors1424-82202014-12-011412242122423010.3390/s141224212s141224212Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision AgricultureMartin Hämmerle0Bernhard Höfle1GIScience Research Group, Institute of Geography, Heidelberg University, Heidelberg 69120, GermanyGIScience Research Group, Institute of Geography, Heidelberg University, Heidelberg 69120, Germany3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up.http://www.mdpi.com/1424-8220/14/12/24212precision agriculture3D geodatagrain cropLiDARresolutioncrop surface modellow-cost |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin Hämmerle Bernhard Höfle |
spellingShingle |
Martin Hämmerle Bernhard Höfle Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture Sensors precision agriculture 3D geodata grain crop LiDAR resolution crop surface model low-cost |
author_facet |
Martin Hämmerle Bernhard Höfle |
author_sort |
Martin Hämmerle |
title |
Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture |
title_short |
Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture |
title_full |
Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture |
title_fullStr |
Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture |
title_full_unstemmed |
Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture |
title_sort |
effects of reduced terrestrial lidar point density on high-resolution grain crop surface models in precision agriculture |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2014-12-01 |
description |
3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. |
topic |
precision agriculture 3D geodata grain crop LiDAR resolution crop surface model low-cost |
url |
http://www.mdpi.com/1424-8220/14/12/24212 |
work_keys_str_mv |
AT martinhammerle effectsofreducedterrestriallidarpointdensityonhighresolutiongraincropsurfacemodelsinprecisionagriculture AT bernhardhofle effectsofreducedterrestriallidarpointdensityonhighresolutiongraincropsurfacemodelsinprecisionagriculture |
_version_ |
1725091268426465280 |