Entanglement entropy in (1+1)D CFTs with multiple local excitations

Abstract In this paper, we use the replica approach to study the Rényi entropy S L of generic locally excited states in (1+1)D CFTs, which are constructed from the insertion of multiple product of local primary operators on vacuum. Alternatively, one can calculate the Rényi entropy S R corresponding...

Full description

Bibliographic Details
Main Authors: Wu-zhong Guo, Song He, Zhu-Xi Luo
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2018)154
Description
Summary:Abstract In this paper, we use the replica approach to study the Rényi entropy S L of generic locally excited states in (1+1)D CFTs, which are constructed from the insertion of multiple product of local primary operators on vacuum. Alternatively, one can calculate the Rényi entropy S R corresponding to the same states using Schmidt decomposition and operator product expansion, which reduces the multiple product of local primary operators to linear combination of operators. The equivalence S L = S R translates into an identity in terms of the F symbols and quantum dimensions for rational CFT, and the latter can be proved algebraically. This, along with a series of papers, gives a complete picture of how the quantum information quantities and the intrinsic structure of (1+1)D CFTs are consistently related.
ISSN:1029-8479