Summary: | The main purpose of this paper is to find some interesting symmetric identities for the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Hurwitz-Euler eta function by generalizing the Carlitz’s form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials. We find some formulas and properties involved in Carlitz’s form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials with higher order. We find new symmetric identities for multiple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials with higher order by using symmetry about multiple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Hurwitz-Euler eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials with higher order.
|