C-fos upregulates P-glycoprotein, contributing to the development of multidrug resistance in HEp-2 laryngeal cancer cells with VCR-induced resistance

Abstract Background Laryngeal cancer tends to have a very poor prognosis due to the unsatisfactory efficacy of chemotherapy for this cancer. Multidrug resistance (MDR) is the main cause of chemotherapy failure. The proto-oncogene c-fos has been shown to be involved in the development of MDR in sever...

Full description

Bibliographic Details
Main Authors: Guodong Li, Xiaoling Hu, Lu Sun, Xin Li, Jianfeng Li, Tongli Li, Xiaohui Zhang
Format: Article
Language:English
Published: BMC 2018-02-01
Series:Cellular & Molecular Biology Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11658-017-0067-8
Description
Summary:Abstract Background Laryngeal cancer tends to have a very poor prognosis due to the unsatisfactory efficacy of chemotherapy for this cancer. Multidrug resistance (MDR) is the main cause of chemotherapy failure. The proto-oncogene c-fos has been shown to be involved in the development of MDR in several tumor types, but few studies have evaluated the relationship between c-fos and MDR in laryngeal cancer. We investigated the role of c-fos in MDR development in laryngeal cancer cells (cell line: human epithelial type 2, HEp-2) using the chemotherapeutic vincristine (VCR). Methods HEp-2/VCR drug resistance was established by selection against an increasing drug concentration gradient. The expressions of c-fos and multidrug resistance 1 (mdr1) were measured using qPCR and western blot. C-fos overexpression or knockdown was performed in various cells. The intracellular rhodamine-123 (Rh-123) accumulation assay was used to detect the transport capacity of P-glycoprotein (P-gp, which is encoded by the mdr1 gene). Results HEp-2 cells with VCR-induced resistance (HEp-2/VCR cells) were not only resistant to VCR but also evolved cross-resistance to other chemotherapeutic drugs. The expressions of the c-fos and mdr1genes were significantly higher in the HEp-2/VCR cells than in control cells. C-fos overexpression in HEp-2 cells (c-fos WT) resulted in increased P-gp expression and increased the IC50 for 5-FU. C-fos knockdown in the HEp-2/VCR cells (c-fos shRNA) resulted in decreased P-gp expression and decreased IC50 for 5-FU. An intracellular Rh-123 accumulation assay showed that the mean intracellular fluorescence intensity (MFI) was lower in the HEp-2/VCR cells than in HEp-2 cells. C-fos WT cells also showed lower MFI. By contrast, c-fos shRNA cells exhibited a higher MFI than the control group. Conclusion C-fos increased the expression of P-gp and mdr1 in the HEp-2/VCR cells, and enhanced the efflux function of the cells, thereby contributing to the development of MDR.
ISSN:1425-8153
1689-1392