Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger

In addition to traditional project management objectives (cost, time, scope and quality, among others), it is now necessary to include a global sustainability objective in all projects, regardless of their nature and scale. The processes for managing this objective may include sub-processes for opti...

Full description

Bibliographic Details
Main Authors: Juan José Cartelle Barros, Manuel Lara Coira, María Pilar de la Cruz López, Alfredo del Caño Gochi, Isabel Soares
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/11/4480
Description
Summary:In addition to traditional project management objectives (cost, time, scope and quality, among others), it is now necessary to include a global sustainability objective in all projects, regardless of their nature and scale. The processes for managing this objective may include sub-processes for optimising the sustainability of some or all of the project’s deliverables. In this paper an integrated optimisation technique was applied to optimise the design of a shell and tube heat exchanger (STHE) by taking into account economic, social and environmental indicators. A case study previously analysed in the literature, although with different objectives and scope, was considered for such a purpose. Diverse sets of weights were defined for the environmental impacts, as well as two additional cases. In the first one, all the indicators where assessed in a linear way. Non-linearities were studied in the second one. Both non-nature-inspired (exhaustive search and Monte Carlo simulation) and nature-inspired (Particle Swarm Optimisation, Crow Search Algorithm and Non-dominated Sorting Genetic Algorithm-II) optimisation techniques were used to solve the problem. The results were presented and discussed in depth. The findings show the necessity of applying these kinds of methodologies in the design of energy systems and, in particular, STHEs.
ISSN:2071-1050