Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM
Open-access global Digital Elevation Models (DEM) have been crucial in enabling flood studies in data-sparse areas. Poor resolution (>30 m), significant vertical errors and the fact that these DEMs are over a decade old continue to hamper our ability to accurately estimate flood hazard. The l...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-12-01
|
Series: | Frontiers in Earth Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/feart.2018.00233/full |
id |
doaj-3aea5639142b4080bc67831dd041dd4d |
---|---|
record_format |
Article |
spelling |
doaj-3aea5639142b4080bc67831dd041dd4d2020-11-24T21:54:51ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632018-12-01610.3389/feart.2018.00233415764Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEMLaurence Hawker0Paul Bates1Jeffrey Neal2Jonathan Rougier3School of Geographical Sciences, University of Bristol, Bristol, United KingdomSchool of Geographical Sciences, University of Bristol, Bristol, United KingdomSchool of Geographical Sciences, University of Bristol, Bristol, United KingdomSchool of Mathematics, University of Bristol, Bristol, United KingdomOpen-access global Digital Elevation Models (DEM) have been crucial in enabling flood studies in data-sparse areas. Poor resolution (>30 m), significant vertical errors and the fact that these DEMs are over a decade old continue to hamper our ability to accurately estimate flood hazard. The limited availability of high-accuracy DEMs dictate that dated open-access global DEMs are still used extensively in flood models, particularly in data-sparse areas. Nevertheless, high-accuracy DEMs have been found to give better flood estimations, and thus can be considered a ‘must-have’ for any flood model. A high-accuracy open-access global DEM is not imminent, meaning that editing or stochastic simulation of existing DEM data will remain the primary means of improving flood simulation. This article provides an overview of errors in some of the most widely used DEM data sets, along with the current advances in reducing them via the creation of new DEMs, editing DEMs and stochastic simulation of DEMs. We focus on a geostatistical approach to stochastically simulate floodplain DEMs from several open-access global DEMs based on the spatial error structure. This DEM simulation approach enables an ensemble of plausible DEMs to be created, thus avoiding the spurious precision of using a single DEM and enabling the generation of probabilistic flood maps. Despite this encouraging step, an imprecise and outdated global DEM is still being used to simulate elevation. To fundamentally improve flood estimations, particularly in rapidly changing developing regions, a high-accuracy open-access global DEM is urgently needed, which in turn can be used in DEM simulation.https://www.frontiersin.org/article/10.3389/feart.2018.00233/fulldigital elevation modelsopen-accessgeostatisticsfloodstochastic simulationfloodplains |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Laurence Hawker Paul Bates Jeffrey Neal Jonathan Rougier |
spellingShingle |
Laurence Hawker Paul Bates Jeffrey Neal Jonathan Rougier Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM Frontiers in Earth Science digital elevation models open-access geostatistics flood stochastic simulation floodplains |
author_facet |
Laurence Hawker Paul Bates Jeffrey Neal Jonathan Rougier |
author_sort |
Laurence Hawker |
title |
Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM |
title_short |
Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM |
title_full |
Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM |
title_fullStr |
Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM |
title_full_unstemmed |
Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM |
title_sort |
perspectives on digital elevation model (dem) simulation for flood modeling in the absence of a high-accuracy open access global dem |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Earth Science |
issn |
2296-6463 |
publishDate |
2018-12-01 |
description |
Open-access global Digital Elevation Models (DEM) have been crucial in enabling flood studies in data-sparse areas. Poor resolution (>30 m), significant vertical errors and the fact that these DEMs are over a decade old continue to hamper our ability to accurately estimate flood hazard. The limited availability of high-accuracy DEMs dictate that dated open-access global DEMs are still used extensively in flood models, particularly in data-sparse areas. Nevertheless, high-accuracy DEMs have been found to give better flood estimations, and thus can be considered a ‘must-have’ for any flood model. A high-accuracy open-access global DEM is not imminent, meaning that editing or stochastic simulation of existing DEM data will remain the primary means of improving flood simulation. This article provides an overview of errors in some of the most widely used DEM data sets, along with the current advances in reducing them via the creation of new DEMs, editing DEMs and stochastic simulation of DEMs. We focus on a geostatistical approach to stochastically simulate floodplain DEMs from several open-access global DEMs based on the spatial error structure. This DEM simulation approach enables an ensemble of plausible DEMs to be created, thus avoiding the spurious precision of using a single DEM and enabling the generation of probabilistic flood maps. Despite this encouraging step, an imprecise and outdated global DEM is still being used to simulate elevation. To fundamentally improve flood estimations, particularly in rapidly changing developing regions, a high-accuracy open-access global DEM is urgently needed, which in turn can be used in DEM simulation. |
topic |
digital elevation models open-access geostatistics flood stochastic simulation floodplains |
url |
https://www.frontiersin.org/article/10.3389/feart.2018.00233/full |
work_keys_str_mv |
AT laurencehawker perspectivesondigitalelevationmodeldemsimulationforfloodmodelingintheabsenceofahighaccuracyopenaccessglobaldem AT paulbates perspectivesondigitalelevationmodeldemsimulationforfloodmodelingintheabsenceofahighaccuracyopenaccessglobaldem AT jeffreyneal perspectivesondigitalelevationmodeldemsimulationforfloodmodelingintheabsenceofahighaccuracyopenaccessglobaldem AT jonathanrougier perspectivesondigitalelevationmodeldemsimulationforfloodmodelingintheabsenceofahighaccuracyopenaccessglobaldem |
_version_ |
1725865350836256768 |