Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-01-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTML |
id |
doaj-3add74ea50cf4053a6159020ec075119 |
---|---|
record_format |
Article |
spelling |
doaj-3add74ea50cf4053a6159020ec0751192021-01-07T02:26:50ZengAIMS PressAIMS Mathematics2473-69882021-01-01632440245310.3934/math.2021148Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz spaceJae-Myoung Kim0Department of Mathematics Education, Andong National University, Andong 36729, Republic of KoreaWe prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$.http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTMLlocal regularity conditionsuitable weak solution3d mhd equations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jae-Myoung Kim |
spellingShingle |
Jae-Myoung Kim Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space AIMS Mathematics local regularity condition suitable weak solution 3d mhd equations |
author_facet |
Jae-Myoung Kim |
author_sort |
Jae-Myoung Kim |
title |
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space |
title_short |
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space |
title_full |
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space |
title_fullStr |
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space |
title_full_unstemmed |
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space |
title_sort |
local interior regularity for the 3d mhd equations in nonendpoint borderline lorentz space |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2021-01-01 |
description |
We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$. |
topic |
local regularity condition suitable weak solution 3d mhd equations |
url |
http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTML |
work_keys_str_mv |
AT jaemyoungkim localinteriorregularityforthe3dmhdequationsinnonendpointborderlinelorentzspace |
_version_ |
1724346841737199616 |