Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space

We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1...

Full description

Bibliographic Details
Main Author: Jae-Myoung Kim
Format: Article
Language:English
Published: AIMS Press 2021-01-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTML
id doaj-3add74ea50cf4053a6159020ec075119
record_format Article
spelling doaj-3add74ea50cf4053a6159020ec0751192021-01-07T02:26:50ZengAIMS PressAIMS Mathematics2473-69882021-01-01632440245310.3934/math.2021148Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz spaceJae-Myoung Kim0Department of Mathematics Education, Andong National University, Andong 36729, Republic of KoreaWe prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$.http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTMLlocal regularity conditionsuitable weak solution3d mhd equations
collection DOAJ
language English
format Article
sources DOAJ
author Jae-Myoung Kim
spellingShingle Jae-Myoung Kim
Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
AIMS Mathematics
local regularity condition
suitable weak solution
3d mhd equations
author_facet Jae-Myoung Kim
author_sort Jae-Myoung Kim
title Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
title_short Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
title_full Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
title_fullStr Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
title_full_unstemmed Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space
title_sort local interior regularity for the 3d mhd equations in nonendpoint borderline lorentz space
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-01-01
description We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^{\infty}(-(\frac{4}{3})^2, 0;L^{3, q}(B_{\frac{3}{4}}))$, $q\in (3, \infty)$ in Lorentz space, then $(u, b)$ is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$.
topic local regularity condition
suitable weak solution
3d mhd equations
url http://www.aimspress.com/article/doi/10.3934/math.2021148?viewType=HTML
work_keys_str_mv AT jaemyoungkim localinteriorregularityforthe3dmhdequationsinnonendpointborderlinelorentzspace
_version_ 1724346841737199616