Design of Polynomial Fuzzy Radial Basis Function Neural Networks Based on Nonsymmetric Fuzzy Clustering and Parallel Optimization
We first propose a Parallel Space Search Algorithm (PSSA) and then introduce a design of Polynomial Fuzzy Radial Basis Function Neural Networks (PFRBFNN) based on Nonsymmetric Fuzzy Clustering Method (NSFCM) and PSSA. The PSSA is a parallel optimization algorithm realized by using Hierarchical Fair...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/745314 |
Summary: | We first propose a Parallel Space Search Algorithm (PSSA) and then introduce a design of Polynomial Fuzzy Radial Basis Function Neural Networks (PFRBFNN) based on Nonsymmetric Fuzzy Clustering Method (NSFCM) and PSSA. The PSSA is a parallel optimization algorithm realized by using Hierarchical Fair Competition strategy. NSFCM is essentially an improved fuzzy clustering method, and the good performance in the design of “conventional” Radial Basis Function Neural Networks (RBFNN) has been proven. In the design of PFRBFNN, NSFCM is used to design the premise part of PFRBFNN, while the consequence part is realized by means of weighted least square (WLS) method. Furthermore, HFC-PSSA is exploited here to optimize the proposed neural network. Experimental results demonstrate that the proposed neural network leads to better performance in comparison to some existing neurofuzzy models encountered in the literature. |
---|---|
ISSN: | 1024-123X 1563-5147 |