Existence of positive solutions for multi-point boundary value problems

The existence of positive solutions are established for the multi-point boundary value problems $$ \left\{ \begin{array}{ll} (-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\ u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=...

Full description

Bibliographic Details
Main Authors: B. Karna, B. Lawrence
Format: Article
Language:English
Published: University of Szeged 2007-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=285
id doaj-3ac5b3fc2a414c9a9958b0bcd6574451
record_format Article
spelling doaj-3ac5b3fc2a414c9a9958b0bcd65744512021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752007-11-0120072611110.14232/ejqtde.2007.1.26285Existence of positive solutions for multi-point boundary value problemsB. Karna0B. Lawrence1Marshall University, West Virginia, USAMarshall University, West Virginia, USAThe existence of positive solutions are established for the multi-point boundary value problems $$ \left\{ \begin{array}{ll} (-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\ u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=0, 1, \ldots , n-1 \end{array} \right. $$ where $a_j,b_j\in[0,\infty), \ j=1, 2, \ldots, m,$ with $0<\sum_{j=1}^{m}a_j<1, \ 0<\sum_{j=1}^{m}b_j<1,$ and $ \eta_j \in(0,1)$ with $0<\eta_1<\eta_2<\ldots <\eta_m<1,$ under certain conditions on $f$ and $p$ using the Krasnosel'skii fixed point theorem for certain values of $\lambda$. We use the positivity of the Green's function and cone theory to prove our results.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=285
collection DOAJ
language English
format Article
sources DOAJ
author B. Karna
B. Lawrence
spellingShingle B. Karna
B. Lawrence
Existence of positive solutions for multi-point boundary value problems
Electronic Journal of Qualitative Theory of Differential Equations
author_facet B. Karna
B. Lawrence
author_sort B. Karna
title Existence of positive solutions for multi-point boundary value problems
title_short Existence of positive solutions for multi-point boundary value problems
title_full Existence of positive solutions for multi-point boundary value problems
title_fullStr Existence of positive solutions for multi-point boundary value problems
title_full_unstemmed Existence of positive solutions for multi-point boundary value problems
title_sort existence of positive solutions for multi-point boundary value problems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2007-11-01
description The existence of positive solutions are established for the multi-point boundary value problems $$ \left\{ \begin{array}{ll} (-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\ u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=0, 1, \ldots , n-1 \end{array} \right. $$ where $a_j,b_j\in[0,\infty), \ j=1, 2, \ldots, m,$ with $0<\sum_{j=1}^{m}a_j<1, \ 0<\sum_{j=1}^{m}b_j<1,$ and $ \eta_j \in(0,1)$ with $0<\eta_1<\eta_2<\ldots <\eta_m<1,$ under certain conditions on $f$ and $p$ using the Krasnosel'skii fixed point theorem for certain values of $\lambda$. We use the positivity of the Green's function and cone theory to prove our results.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=285
work_keys_str_mv AT bkarna existenceofpositivesolutionsformultipointboundaryvalueproblems
AT blawrence existenceofpositivesolutionsformultipointboundaryvalueproblems
_version_ 1721303807318556672