Existence of positive solutions for multi-point boundary value problems
The existence of positive solutions are established for the multi-point boundary value problems $$ \left\{ \begin{array}{ll} (-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\ u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2007-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=285 |
id |
doaj-3ac5b3fc2a414c9a9958b0bcd6574451 |
---|---|
record_format |
Article |
spelling |
doaj-3ac5b3fc2a414c9a9958b0bcd65744512021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752007-11-0120072611110.14232/ejqtde.2007.1.26285Existence of positive solutions for multi-point boundary value problemsB. Karna0B. Lawrence1Marshall University, West Virginia, USAMarshall University, West Virginia, USAThe existence of positive solutions are established for the multi-point boundary value problems $$ \left\{ \begin{array}{ll} (-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\ u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=0, 1, \ldots , n-1 \end{array} \right. $$ where $a_j,b_j\in[0,\infty), \ j=1, 2, \ldots, m,$ with $0<\sum_{j=1}^{m}a_j<1, \ 0<\sum_{j=1}^{m}b_j<1,$ and $ \eta_j \in(0,1)$ with $0<\eta_1<\eta_2<\ldots <\eta_m<1,$ under certain conditions on $f$ and $p$ using the Krasnosel'skii fixed point theorem for certain values of $\lambda$. We use the positivity of the Green's function and cone theory to prove our results.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=285 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. Karna B. Lawrence |
spellingShingle |
B. Karna B. Lawrence Existence of positive solutions for multi-point boundary value problems Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
B. Karna B. Lawrence |
author_sort |
B. Karna |
title |
Existence of positive solutions for multi-point boundary value problems |
title_short |
Existence of positive solutions for multi-point boundary value problems |
title_full |
Existence of positive solutions for multi-point boundary value problems |
title_fullStr |
Existence of positive solutions for multi-point boundary value problems |
title_full_unstemmed |
Existence of positive solutions for multi-point boundary value problems |
title_sort |
existence of positive solutions for multi-point boundary value problems |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2007-11-01 |
description |
The existence of positive solutions are established for the multi-point boundary value problems
$$
\left\{ \begin{array}{ll}
(-1)^nu^{(2n)}(x)=\lambda p(x)f(u(x)),\quad 0<x<1 \\
u^{(2i)}(0)=\sum_{j=1}^{m}a_ju^{(2i)}(\eta _j), \quad
u^{(2i+1)}(1)=\sum_{j=1}^{m}b_ju^{(2i+1)}(\eta _j), \quad i=0, 1,
\ldots , n-1
\end{array} \right.
$$
where $a_j,b_j\in[0,\infty), \ j=1, 2, \ldots, m,$ with $0<\sum_{j=1}^{m}a_j<1, \ 0<\sum_{j=1}^{m}b_j<1,$ and $ \eta_j \in(0,1)$ with $0<\eta_1<\eta_2<\ldots <\eta_m<1,$ under certain conditions on $f$ and $p$ using the Krasnosel'skii fixed point theorem for certain values of $\lambda$. We use the positivity of the Green's function and cone theory to prove our results. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=285 |
work_keys_str_mv |
AT bkarna existenceofpositivesolutionsformultipointboundaryvalueproblems AT blawrence existenceofpositivesolutionsformultipointboundaryvalueproblems |
_version_ |
1721303807318556672 |