The Slater and Sub-k-Domination Number of a Graph with Applications to Domination and k-Domination

In this paper we introduce and study a new graph invariant derived from the degree sequence of a graph G, called the sub-k-domination number and denoted subk(G). This invariant serves as a generalization of the Slater number; in particular, we show that subk(G) is a computationally efficient sharp l...

Full description

Bibliographic Details
Main Authors: Amos David, Asplund John, Brimkov Boris, Davila Randy
Format: Article
Language:English
Published: Sciendo 2020-02-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2134
Description
Summary:In this paper we introduce and study a new graph invariant derived from the degree sequence of a graph G, called the sub-k-domination number and denoted subk(G). This invariant serves as a generalization of the Slater number; in particular, we show that subk(G) is a computationally efficient sharp lower bound on the k-domination number of G, and improves on several known lower bounds. We also characterize the sub-k-domination numbers of several families of graphs, provide structural results on sub-k-domination, and explore properties of graphs which are subk(G)-critical with respect to addition and deletion of vertices and edges.
ISSN:2083-5892