A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations

Remote sensing of the atmospheric composition from current and future satellites, such as the Sentinel missions of the Copernicus programme, yields an unprecedented amount of data to monitor air quality, ozone, UV radiation and other climate variables. Hence, full exploitation of the growing wealth...

Full description

Bibliographic Details
Main Authors: Marco Gai, Flavio Barbara, Simone Ceccherini, Ugo Cortesi, Samuele Del Bianco, Cecilia Tirelli, Nicola Zoppetti, Claudio Belotti, Bruno Canessa, Vincenzo Farruggia, Andrea Masini, Arno Keppens, Jean-Christopher Lambert, Antti Arola, Antti Lipponen, Olaf Tuinder
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/2/210
id doaj-3a96d4fb84e74fb6a9e4a8db073010a8
record_format Article
spelling doaj-3a96d4fb84e74fb6a9e4a8db073010a82021-01-10T00:01:53ZengMDPI AGRemote Sensing2072-42922021-01-011321021010.3390/rs13020210A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone ObservationsMarco Gai0Flavio Barbara1Simone Ceccherini2Ugo Cortesi3Samuele Del Bianco4Cecilia Tirelli5Nicola Zoppetti6Claudio Belotti7Bruno Canessa8Vincenzo Farruggia9Andrea Masini10Arno Keppens11Jean-Christopher Lambert12Antti Arola13Antti Lipponen14Olaf Tuinder15Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, ItalyIstituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), I-50019 Sesto Fiorentino, ItalyFlyby, S.r.l., I-57128 Livorno, ItalyFlyby, S.r.l., I-57128 Livorno, ItalyFlyby, S.r.l., I-57128 Livorno, ItalyRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), B-1180 Brussels, BelgiumRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), B-1180 Brussels, BelgiumFinnish Meteorological Institute, 70211 Kuopio, FinlandFinnish Meteorological Institute, 70211 Kuopio, FinlandRoyal Netherlands Meteorological Institute, 3731 GA De Bilt, The NetherlandsRemote sensing of the atmospheric composition from current and future satellites, such as the Sentinel missions of the Copernicus programme, yields an unprecedented amount of data to monitor air quality, ozone, UV radiation and other climate variables. Hence, full exploitation of the growing wealth of information delivered by spaceborne observing systems requires addressing the technological challenges for developing new strategies and tools that are capable to deal with these huge data volumes. The H2020 AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) project investigated a novel approach for synergistic use of ozone profile measurements acquired at different frequencies (ultraviolet, visible, thermal infrared) by sensors onboard Geostationary Equatorial Orbit (GEO) and Low Earth Orbit (LEO) satellites in the framework of the Copernicus Sentinel-4 and Sentinel-5 missions. This paper outlines the main features of the technological infrastructure, designed and developed to support the AURORA data processing chain as a distributed data processing and describes in detail the key components of the infrastructure and the software prototype. The latter demonstrates the technical feasibility of the automatic execution of the full processing chain with simulated data. The Data Processing Chain (DPC) presented in this work thus replicates a processing system that, starting from the operational satellite retrievals, carries out their fusion and results in the assimilation of the fused products. These consist in ozone vertical profiles from which further modules of the chain deliver tropospheric ozone and UV radiation at the Earth’s surface. The conclusions highlight the relevance of this novel approach to the synergistic use of operational satellite data and underline that the infrastructure uses general-purpose technologies and is open for applications in different contexts.https://www.mdpi.com/2072-4292/13/2/210distributed data processingsimulated satellite measurementssoftware prototypegeo-database
collection DOAJ
language English
format Article
sources DOAJ
author Marco Gai
Flavio Barbara
Simone Ceccherini
Ugo Cortesi
Samuele Del Bianco
Cecilia Tirelli
Nicola Zoppetti
Claudio Belotti
Bruno Canessa
Vincenzo Farruggia
Andrea Masini
Arno Keppens
Jean-Christopher Lambert
Antti Arola
Antti Lipponen
Olaf Tuinder
spellingShingle Marco Gai
Flavio Barbara
Simone Ceccherini
Ugo Cortesi
Samuele Del Bianco
Cecilia Tirelli
Nicola Zoppetti
Claudio Belotti
Bruno Canessa
Vincenzo Farruggia
Andrea Masini
Arno Keppens
Jean-Christopher Lambert
Antti Arola
Antti Lipponen
Olaf Tuinder
A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
Remote Sensing
distributed data processing
simulated satellite measurements
software prototype
geo-database
author_facet Marco Gai
Flavio Barbara
Simone Ceccherini
Ugo Cortesi
Samuele Del Bianco
Cecilia Tirelli
Nicola Zoppetti
Claudio Belotti
Bruno Canessa
Vincenzo Farruggia
Andrea Masini
Arno Keppens
Jean-Christopher Lambert
Antti Arola
Antti Lipponen
Olaf Tuinder
author_sort Marco Gai
title A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
title_short A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
title_full A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
title_fullStr A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
title_full_unstemmed A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations
title_sort distributed modular data processing chain applied to simulated satellite ozone observations
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-01-01
description Remote sensing of the atmospheric composition from current and future satellites, such as the Sentinel missions of the Copernicus programme, yields an unprecedented amount of data to monitor air quality, ozone, UV radiation and other climate variables. Hence, full exploitation of the growing wealth of information delivered by spaceborne observing systems requires addressing the technological challenges for developing new strategies and tools that are capable to deal with these huge data volumes. The H2020 AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) project investigated a novel approach for synergistic use of ozone profile measurements acquired at different frequencies (ultraviolet, visible, thermal infrared) by sensors onboard Geostationary Equatorial Orbit (GEO) and Low Earth Orbit (LEO) satellites in the framework of the Copernicus Sentinel-4 and Sentinel-5 missions. This paper outlines the main features of the technological infrastructure, designed and developed to support the AURORA data processing chain as a distributed data processing and describes in detail the key components of the infrastructure and the software prototype. The latter demonstrates the technical feasibility of the automatic execution of the full processing chain with simulated data. The Data Processing Chain (DPC) presented in this work thus replicates a processing system that, starting from the operational satellite retrievals, carries out their fusion and results in the assimilation of the fused products. These consist in ozone vertical profiles from which further modules of the chain deliver tropospheric ozone and UV radiation at the Earth’s surface. The conclusions highlight the relevance of this novel approach to the synergistic use of operational satellite data and underline that the infrastructure uses general-purpose technologies and is open for applications in different contexts.
topic distributed data processing
simulated satellite measurements
software prototype
geo-database
url https://www.mdpi.com/2072-4292/13/2/210
work_keys_str_mv AT marcogai adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT flaviobarbara adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT simonececcherini adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT ugocortesi adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT samueledelbianco adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT ceciliatirelli adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT nicolazoppetti adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT claudiobelotti adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT brunocanessa adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT vincenzofarruggia adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT andreamasini adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT arnokeppens adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT jeanchristopherlambert adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT anttiarola adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT anttilipponen adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT olaftuinder adistributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT marcogai distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT flaviobarbara distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT simonececcherini distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT ugocortesi distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT samueledelbianco distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT ceciliatirelli distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT nicolazoppetti distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT claudiobelotti distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT brunocanessa distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT vincenzofarruggia distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT andreamasini distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT arnokeppens distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT jeanchristopherlambert distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT anttiarola distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT anttilipponen distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
AT olaftuinder distributedmodulardataprocessingchainappliedtosimulatedsatelliteozoneobservations
_version_ 1724343704468062208