Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction
Abstract The 2011 Tohoku-oki earthquake unexpectedly ruptured to the shallowest portion of the plate boundary fault and triggered a large tsunami. The shallow portion had generally been regarded as a seismically stable zone until this event, but its significance has now been dramatically revealed fo...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-11-01
|
Series: | Progress in Earth and Planetary Science |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40645-018-0230-5 |
id |
doaj-3a7d7d2f27524433ad354a48360f7c2a |
---|---|
record_format |
Article |
spelling |
doaj-3a7d7d2f27524433ad354a48360f7c2a2020-11-25T01:28:42ZengSpringerOpenProgress in Earth and Planetary Science2197-42842018-11-01511610.1186/s40645-018-0230-5Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subductionHiroaki Koge0Yasuhiro Yamada1Akihiro Ohde2Arthur Bauville3Asuka Yamaguchi4Juichiro Ashi5Atmosphere and Ocean Research Institute, The University of TokyoJapan Agency for Marine-Earth Science and TechnologyAtmosphere and Ocean Research Institute, The University of TokyoJapan Agency for Marine-Earth Science and TechnologyAtmosphere and Ocean Research Institute, The University of TokyoAtmosphere and Ocean Research Institute, The University of TokyoAbstract The 2011 Tohoku-oki earthquake unexpectedly ruptured to the shallowest portion of the plate boundary fault and triggered a large tsunami. The shallow portion had generally been regarded as a seismically stable zone until this event, but its significance has now been dramatically revealed for future disaster mitigation. This research approaches the shallow portion, especially the formation process of its structure and plate boundary faults. Scientific drilling conducted near the Japan Trench after the earthquake reported a thin plate boundary fault (~ 7 m) and thick deformation zone (~ 100 m). This thin fault would be expected given the relatively small displacement near the trench (~ 3.2 km), but the deformation zone thickness is anomalously wide given this small magnitude of slip. To understand the dynamic deformation processes that lead to the development of a thick deformation zone surrounding a thin fault core, we conducted forward modeling of an analog experiment with the technique to visualize fault activity. Sandbox experiments are effective for the approximation of the geological phenomenon and structure. The seismic profile of the largest slip region in the 2011 earthquake shows that a half-graben structure has been subducted underneath the frontal wedge, thus we focused on this structural architecture. As a result, we found a new fault formation pattern, i.e., the frontal thrust (the most frontal part of décollement) periodically partitioned into pieces, which connect again to form a large-continuous fault. The fault also oscillates up and down during this process, which we call “dancing,” and a thick shear zone is formed in a relatively short time where this occurs, even though the fault only has a small displacement. By analogy, the thick deformation zone observed at the Japan Trench could be formed by such fault dancing. The energy of the fault activity is commonly estimated from the fault displacement derived from the thickness of the shear zones. Applying the thickness-displacement law without considering the effect of the dancing may cause overestimation. The architecture of the shear zone formed is similar to that of a mélange, and the origin of tectonic mélanges may be explained by this mechanism.http://link.springer.com/article/10.1186/s40645-018-0230-5Analog modelDigital image correlationJapan TrenchSandboxThrust formation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hiroaki Koge Yasuhiro Yamada Akihiro Ohde Arthur Bauville Asuka Yamaguchi Juichiro Ashi |
spellingShingle |
Hiroaki Koge Yasuhiro Yamada Akihiro Ohde Arthur Bauville Asuka Yamaguchi Juichiro Ashi Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction Progress in Earth and Planetary Science Analog model Digital image correlation Japan Trench Sandbox Thrust formation |
author_facet |
Hiroaki Koge Yasuhiro Yamada Akihiro Ohde Arthur Bauville Asuka Yamaguchi Juichiro Ashi |
author_sort |
Hiroaki Koge |
title |
Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction |
title_short |
Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction |
title_full |
Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction |
title_fullStr |
Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction |
title_full_unstemmed |
Dynamic formation process of thick deformation zone on the shallow plate boundary fault of the Japan Trench: insight from analog experiments of half-graben subduction |
title_sort |
dynamic formation process of thick deformation zone on the shallow plate boundary fault of the japan trench: insight from analog experiments of half-graben subduction |
publisher |
SpringerOpen |
series |
Progress in Earth and Planetary Science |
issn |
2197-4284 |
publishDate |
2018-11-01 |
description |
Abstract The 2011 Tohoku-oki earthquake unexpectedly ruptured to the shallowest portion of the plate boundary fault and triggered a large tsunami. The shallow portion had generally been regarded as a seismically stable zone until this event, but its significance has now been dramatically revealed for future disaster mitigation. This research approaches the shallow portion, especially the formation process of its structure and plate boundary faults. Scientific drilling conducted near the Japan Trench after the earthquake reported a thin plate boundary fault (~ 7 m) and thick deformation zone (~ 100 m). This thin fault would be expected given the relatively small displacement near the trench (~ 3.2 km), but the deformation zone thickness is anomalously wide given this small magnitude of slip. To understand the dynamic deformation processes that lead to the development of a thick deformation zone surrounding a thin fault core, we conducted forward modeling of an analog experiment with the technique to visualize fault activity. Sandbox experiments are effective for the approximation of the geological phenomenon and structure. The seismic profile of the largest slip region in the 2011 earthquake shows that a half-graben structure has been subducted underneath the frontal wedge, thus we focused on this structural architecture. As a result, we found a new fault formation pattern, i.e., the frontal thrust (the most frontal part of décollement) periodically partitioned into pieces, which connect again to form a large-continuous fault. The fault also oscillates up and down during this process, which we call “dancing,” and a thick shear zone is formed in a relatively short time where this occurs, even though the fault only has a small displacement. By analogy, the thick deformation zone observed at the Japan Trench could be formed by such fault dancing. The energy of the fault activity is commonly estimated from the fault displacement derived from the thickness of the shear zones. Applying the thickness-displacement law without considering the effect of the dancing may cause overestimation. The architecture of the shear zone formed is similar to that of a mélange, and the origin of tectonic mélanges may be explained by this mechanism. |
topic |
Analog model Digital image correlation Japan Trench Sandbox Thrust formation |
url |
http://link.springer.com/article/10.1186/s40645-018-0230-5 |
work_keys_str_mv |
AT hiroakikoge dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction AT yasuhiroyamada dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction AT akihiroohde dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction AT arthurbauville dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction AT asukayamaguchi dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction AT juichiroashi dynamicformationprocessofthickdeformationzoneontheshallowplateboundaryfaultofthejapantrenchinsightfromanalogexperimentsofhalfgrabensubduction |
_version_ |
1725100067290873856 |