miR-541 serves as a prognostic biomarker of osteosarcoma and its regulatory effect on tumor cell proliferation, migration and invasion by targeting TGIF2

Abstract Background Several studies reported the dysregulation of miR-541 in the progression of some human malignancies. Osteosarcoma (OS) is one of the most common primary malignant bone tumors. This study aimed to assess the expression and clinical significance of miR-541 in OS patients and explor...

Full description

Bibliographic Details
Main Authors: Chunlei Liu, Xiuling Yi
Format: Article
Language:English
Published: BMC 2020-07-01
Series:Diagnostic Pathology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13000-020-01008-9
Description
Summary:Abstract Background Several studies reported the dysregulation of miR-541 in the progression of some human malignancies. Osteosarcoma (OS) is one of the most common primary malignant bone tumors. This study aimed to assess the expression and clinical significance of miR-541 in OS patients and explore the biological function of miR-541 in tumor progression. Methods Expression of miR-541 was detected by quantitative real-time PCR, and its prognostic value was evaluated using Kaplan-Meier survival analysis. The biological function of miR-541 was examined by analyzing its effects on OS cell proliferation, migration and invasion. Additionally, the underlying potential target of miR-541 was predicated and analyzed. Results The expression of miR-541 was significantly decreased in OS tissues and cell lines. The deregulated expression of miR-541 in tumor tissues was associated with the overall survival of OS patients and was a potential independent prognostic indicator. In OS cells, the overexpression of miR-541 could inhibit cell proliferation, migration and invasion. The luciferase activity results indicated that TGIF2 was a potential target of miR-541. Conclusion The results of this study revealed that the decreased miR-541 expression in OS patients may serve as a prognostic biomarker, and that the overexpression of miR-541 in OS cells results in inhibited cell proliferation, migration and invasion, indicating the potential of miR-541 as a therapeutic target in OS treatment.
ISSN:1746-1596