Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice
Background. Exercise benefits to cardiac rehabilitation (CR) following stable myocardial infarction (MI). The suitable exercise duration for aged patients with coronary heart disease (CHD) remains controversial, and the underlying molecular mechanism is still unclear. Methods and Results. 18-Month-o...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Oxidative Medicine and Cellular Longevity |
Online Access: | http://dx.doi.org/10.1155/2018/4079041 |
id |
doaj-3a611bab94974d8f92b8e56acc9da4fa |
---|---|
record_format |
Article |
spelling |
doaj-3a611bab94974d8f92b8e56acc9da4fa2020-11-24T22:40:13ZengHindawi LimitedOxidative Medicine and Cellular Longevity1942-09001942-09942018-01-01201810.1155/2018/40790414079041Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged MiceDajun Zhao0Yang Sun1Yanzhen Tan2Zhengbin Zhang3Zuoxu Hou4Chao Gao5Pan Feng6Xing Zhang7Wei Yi8Feng Gao9Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Geriatric, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Geriatric, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, ChinaDepartment of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, ChinaDepartment of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an 710032, ChinaDepartment of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, ChinaBackground. Exercise benefits to cardiac rehabilitation (CR) following stable myocardial infarction (MI). The suitable exercise duration for aged patients with coronary heart disease (CHD) remains controversial, and the underlying molecular mechanism is still unclear. Methods and Results. 18-Month-old mice after stable MI were randomly submitted to different durations of exercise, including 15 and 60 min swimming training (ST) once per day, five times a week for 8 weeks. Compared to sedentary mice, 15 min ST, rather than 60 min ST, significantly augmented left ventricular function, increased survival rate, and suppressed myocardial fibrosis and apoptosis. 15 min ST improved mitochondrial morphology via regulating mitochondrial fission-fusion signaling. 15 min ST regulated mitophagy signaling via inhibiting LC3-II and P62 levels and increasing PINK/Parkin expression. 15 min ST also inhibited ROS production and enhanced antioxidant SOD2 activity. Notably, 15 min ST significantly increased sirtuin (SIRT) 3 level (2.7-fold) in vivo while the inhibition of SIRT3 exacerbated senescent H9c2 cellular LDH release and ROS production under hypoxia. In addition, SIRT3 silencing impairs mitochondrial dynamics and mitophagy in senescent cardiomyocytes against simulated ischemia (SI) injury. Conclusion. Collectively, our study demonstrated for the first time that sustained short-duration exercise, rather than long-duration exercise, attenuates cardiac dysfunction after MI in aged mice. It is likely that the positive regulation induced by a short-duration ST regimen on the elevated SIRT3 protein level improved mitochondrial quality control and decreased apoptosis and fibrosis contributed to the observed more resistant phenotype.http://dx.doi.org/10.1155/2018/4079041 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dajun Zhao Yang Sun Yanzhen Tan Zhengbin Zhang Zuoxu Hou Chao Gao Pan Feng Xing Zhang Wei Yi Feng Gao |
spellingShingle |
Dajun Zhao Yang Sun Yanzhen Tan Zhengbin Zhang Zuoxu Hou Chao Gao Pan Feng Xing Zhang Wei Yi Feng Gao Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice Oxidative Medicine and Cellular Longevity |
author_facet |
Dajun Zhao Yang Sun Yanzhen Tan Zhengbin Zhang Zuoxu Hou Chao Gao Pan Feng Xing Zhang Wei Yi Feng Gao |
author_sort |
Dajun Zhao |
title |
Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice |
title_short |
Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice |
title_full |
Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice |
title_fullStr |
Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice |
title_full_unstemmed |
Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice |
title_sort |
short-duration swimming exercise after myocardial infarction attenuates cardiac dysfunction and regulates mitochondrial quality control in aged mice |
publisher |
Hindawi Limited |
series |
Oxidative Medicine and Cellular Longevity |
issn |
1942-0900 1942-0994 |
publishDate |
2018-01-01 |
description |
Background. Exercise benefits to cardiac rehabilitation (CR) following stable myocardial infarction (MI). The suitable exercise duration for aged patients with coronary heart disease (CHD) remains controversial, and the underlying molecular mechanism is still unclear. Methods and Results. 18-Month-old mice after stable MI were randomly submitted to different durations of exercise, including 15 and 60 min swimming training (ST) once per day, five times a week for 8 weeks. Compared to sedentary mice, 15 min ST, rather than 60 min ST, significantly augmented left ventricular function, increased survival rate, and suppressed myocardial fibrosis and apoptosis. 15 min ST improved mitochondrial morphology via regulating mitochondrial fission-fusion signaling. 15 min ST regulated mitophagy signaling via inhibiting LC3-II and P62 levels and increasing PINK/Parkin expression. 15 min ST also inhibited ROS production and enhanced antioxidant SOD2 activity. Notably, 15 min ST significantly increased sirtuin (SIRT) 3 level (2.7-fold) in vivo while the inhibition of SIRT3 exacerbated senescent H9c2 cellular LDH release and ROS production under hypoxia. In addition, SIRT3 silencing impairs mitochondrial dynamics and mitophagy in senescent cardiomyocytes against simulated ischemia (SI) injury. Conclusion. Collectively, our study demonstrated for the first time that sustained short-duration exercise, rather than long-duration exercise, attenuates cardiac dysfunction after MI in aged mice. It is likely that the positive regulation induced by a short-duration ST regimen on the elevated SIRT3 protein level improved mitochondrial quality control and decreased apoptosis and fibrosis contributed to the observed more resistant phenotype. |
url |
http://dx.doi.org/10.1155/2018/4079041 |
work_keys_str_mv |
AT dajunzhao shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT yangsun shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT yanzhentan shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT zhengbinzhang shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT zuoxuhou shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT chaogao shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT panfeng shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT xingzhang shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT weiyi shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice AT fenggao shortdurationswimmingexerciseaftermyocardialinfarctionattenuatescardiacdysfunctionandregulatesmitochondrialqualitycontrolinagedmice |
_version_ |
1725705413432705024 |