Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion

The aim of this paper is to review the key findings about how particle-stabilised (or Pickering) emulsions respond to stress and break down. Over the last ten years, new insights have been gained into how particles attached to droplet (and bubble) surfaces alter the destabilisation mechanisms in emu...

Full description

Bibliographic Details
Main Authors: Catherine P. Whitby, Erica J. Wanless
Format: Article
Language:English
Published: MDPI AG 2016-07-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/9/8/626
Description
Summary:The aim of this paper is to review the key findings about how particle-stabilised (or Pickering) emulsions respond to stress and break down. Over the last ten years, new insights have been gained into how particles attached to droplet (and bubble) surfaces alter the destabilisation mechanisms in emulsions. The conditions under which chemical demulsifiers displace, or detach, particles from the interface were established. Mass transfer between drops and the continuous phase was shown to disrupt the layers of particles attached to drop surfaces. The criteria for causing coalescence by applying physical stress (shear or compression) to Pickering emulsions were characterised. These findings are being used to design the structures of materials formed by breaking Pickering emulsions.
ISSN:1996-1944