Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication

Magnetic communication is a promising technique in harsh environments, such as seawater. To enable efficient communication, transmitting and receiving coils are conventionally operated as part of resonant circuits. However, this results in narrow bandwidths and the associated disadvantages. Thus, mo...

Full description

Bibliographic Details
Main Authors: Maurice Hott, J. Maximilian Placzek, Peter A. Hoeher
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9539236/
id doaj-3a3841da837f491bb537d12b97d51ca5
record_format Article
spelling doaj-3a3841da837f491bb537d12b97d51ca52021-09-30T23:01:31ZengIEEEIEEE Access2169-35362021-01-01912943112944210.1109/ACCESS.2021.31130869539236Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic CommunicationMaurice Hott0https://orcid.org/0000-0003-0218-0933J. Maximilian Placzek1https://orcid.org/0000-0002-1651-4079Peter A. Hoeher2https://orcid.org/0000-0003-3475-1710Faculty of Engineering, Kiel University, Kiel, GermanyFaculty of Engineering, Kiel University, Kiel, GermanyFaculty of Engineering, Kiel University, Kiel, GermanyMagnetic communication is a promising technique in harsh environments, such as seawater. To enable efficient communication, transmitting and receiving coils are conventionally operated as part of resonant circuits. However, this results in narrow bandwidths and the associated disadvantages. Thus, most digital modulation schemes cannot be used efficiently on these systems. In this contribution, a mixed hardware/software approach for efficient frequency shift keying is presented. With this energy-efficient modulation concept, the full available bandwidth of a receiver can be utilized for data transmission, while all advantages of using a resonant circuit on the transmitter side can be retained. Towards this goal, a transmitter-side resonant circuit is designed, which supports discrete switching between multiple resonant frequencies. The data symbols are mapped onto these unique resonant frequencies. This prevents the parasitic amplitude modulation associated with conventional frequency shift keying applied to narrow bandwidth circuits, resulting in maximum transmitted magnitude and minimum symbol distortion without need for any further measures. Furthermore, the frequency spacing and/or the cardinality of the symbol alphabet can be increased considerably. At the receiver side, the classical pick-up coil is replaced by a high-sensitivity broadband magnetic field sensor. Numerical results of the mixed hardware/software scheme are provided, and are verified by an experimental setup. This setup is constructed using principles from the field of power electronics and demonstrates, how this modulation concept can be implemented with relatively simple and highly energy efficient electronics and without the use of linear amplifiers in particular.https://ieeexplore.ieee.org/document/9539236/Digital modulationcommunication in harsh environmentsmagnetic communicationmagnetic field measurementmagnetic sensorsmobile communication
collection DOAJ
language English
format Article
sources DOAJ
author Maurice Hott
J. Maximilian Placzek
Peter A. Hoeher
spellingShingle Maurice Hott
J. Maximilian Placzek
Peter A. Hoeher
Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
IEEE Access
Digital modulation
communication in harsh environments
magnetic communication
magnetic field measurement
magnetic sensors
mobile communication
author_facet Maurice Hott
J. Maximilian Placzek
Peter A. Hoeher
author_sort Maurice Hott
title Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
title_short Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
title_full Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
title_fullStr Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
title_full_unstemmed Multi-Resonant Frequency Shift Keying: A Novel and Efficient Modulation Scheme for Magnetic Communication
title_sort multi-resonant frequency shift keying: a novel and efficient modulation scheme for magnetic communication
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description Magnetic communication is a promising technique in harsh environments, such as seawater. To enable efficient communication, transmitting and receiving coils are conventionally operated as part of resonant circuits. However, this results in narrow bandwidths and the associated disadvantages. Thus, most digital modulation schemes cannot be used efficiently on these systems. In this contribution, a mixed hardware/software approach for efficient frequency shift keying is presented. With this energy-efficient modulation concept, the full available bandwidth of a receiver can be utilized for data transmission, while all advantages of using a resonant circuit on the transmitter side can be retained. Towards this goal, a transmitter-side resonant circuit is designed, which supports discrete switching between multiple resonant frequencies. The data symbols are mapped onto these unique resonant frequencies. This prevents the parasitic amplitude modulation associated with conventional frequency shift keying applied to narrow bandwidth circuits, resulting in maximum transmitted magnitude and minimum symbol distortion without need for any further measures. Furthermore, the frequency spacing and/or the cardinality of the symbol alphabet can be increased considerably. At the receiver side, the classical pick-up coil is replaced by a high-sensitivity broadband magnetic field sensor. Numerical results of the mixed hardware/software scheme are provided, and are verified by an experimental setup. This setup is constructed using principles from the field of power electronics and demonstrates, how this modulation concept can be implemented with relatively simple and highly energy efficient electronics and without the use of linear amplifiers in particular.
topic Digital modulation
communication in harsh environments
magnetic communication
magnetic field measurement
magnetic sensors
mobile communication
url https://ieeexplore.ieee.org/document/9539236/
work_keys_str_mv AT mauricehott multiresonantfrequencyshiftkeyinganovelandefficientmodulationschemeformagneticcommunication
AT jmaximilianplaczek multiresonantfrequencyshiftkeyinganovelandefficientmodulationschemeformagneticcommunication
AT peterahoeher multiresonantfrequencyshiftkeyinganovelandefficientmodulationschemeformagneticcommunication
_version_ 1716862614182559744