Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: an in vitro study

Abstract Background Melanoma as a type of skin cancer, is associated with a high mortality rate. Therefore, early diagnosis and efficient surgical treatment of this disease is very important. Photodynamic therapy (PDT) involves the activation of a photosensitizer by light at specific wavelength that...

Full description

Bibliographic Details
Main Authors: Khatereh Khorsandi, Reza Hosseinzadeh, Elham Chamani
Format: Article
Language:English
Published: BMC 2020-10-01
Series:Cancer Cell International
Subjects:
ROS
Online Access:http://link.springer.com/article/10.1186/s12935-020-01616-x
Description
Summary:Abstract Background Melanoma as a type of skin cancer, is associated with a high mortality rate. Therefore, early diagnosis and efficient surgical treatment of this disease is very important. Photodynamic therapy (PDT) involves the activation of a photosensitizer by light at specific wavelength that interacts with oxygen and creates singlet oxygen molecules or reactive oxygen species (ROS), which can lead to tumor cell death. Furthermore, one of the main approches in the prevention and treatment of various cancers is plant compounds application. Phenolic compounds are essential class of natural antioxidants, which play crucial biological roles such as anticancer effects. It was previously suggested that flavonoid such as rutoside could acts as pro-oxidant or antioxidant. Hence, in this study, we aimed to investigate the effect of rutoside on the combination therapy with methylene blue (MB) assisted by photodynamic treatment (PDT) using red light source (660 nm; power density: 30 mW/cm2) on A375 human melanoma cancer cells. Methods For this purpose, the A375 human melanoma cancer cell lines were treated by MB-PDT and rutoside. Clonogenic cell survival, MTT assay, and cell death mechanisms were also determined after performing the treatment. Subsequently, after the rutoside treatment and photodynamic therapy (PDT), cell cycle and intracellular reactive oxygen species (ROS) generation were measured. Results The obtained results showed that, MB-PDT and rutoside had better cytotoxic and antiprolifrative effects on A375 melanoma cancer cells compared to each free drug, whereas the cytotoxic effect on HDF human dermal fibroblast cell was not significant. MB-PDT and rutoside combination induced apoptosis and cell cycle arrest in the human melanoma cancer cell line. Intracellular ROS increased in A375 cancer cell line after the treatment with MB-PDT and rutoside. Conclusion The results suggest that, MB-PDT and rutoside could be considered as novel approaches as the combination treatment of melanoma cancer.
ISSN:1475-2867