Developments regarding three-body reaction channels within the R-matrix formalism

At low incident energies of nucleon-induced reaction cross sections exhibit a striking resonance structure which cannot properly be described by (semi-) microscopic models. Usually R-matrix theory is applied which provides a sufficiently accurate but phenomenological description of the resonance reg...

Full description

Bibliographic Details
Main Authors: Raab Benedikt, Srdinko Thomas, Leeb Helmut
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/15/epjconf_nd2019_03002.pdf
Description
Summary:At low incident energies of nucleon-induced reaction cross sections exhibit a striking resonance structure which cannot properly be described by (semi-) microscopic models. Usually R-matrix theory is applied which provides a sufficiently accurate but phenomenological description of the resonance region. However, standard R-matrix theory is only suited for two-particle channels. Three- and many-particle channels which may occur at rather low incident energies and are usually treated in approximative or effective way. In this contribution an extension to unequal masses of the R-matrix formulation of Glockle based on the Faddeev equation is performed and proper expressions for numerical implementation are given.
ISSN:2100-014X