Numerical implementation of the loop–tree duality method
Abstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-mome...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-05-01
|
Series: | European Physical Journal C: Particles and Fields |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6 |
id |
doaj-39d6ed6e9b2848eeae7ab14efb540f94 |
---|---|
record_format |
Article |
spelling |
doaj-39d6ed6e9b2848eeae7ab14efb540f942020-11-25T00:40:02ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522017-05-0177511510.1140/epjc/s10052-017-4833-6Numerical implementation of the loop–tree duality methodSebastian Buchta0Grigorios Chachamis1Petros Draggiotis2Germán Rodrigo3Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc CientíficInstituto de Física Teórica UAM/CSIC, Universidad Autónoma de MadridInstitute of Nuclear and Particle Physics, NCSR “Demokritos”Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc CientíficAbstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6External MomentumInternal MassLoop MomentumLoop IntegralContour Deformation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sebastian Buchta Grigorios Chachamis Petros Draggiotis Germán Rodrigo |
spellingShingle |
Sebastian Buchta Grigorios Chachamis Petros Draggiotis Germán Rodrigo Numerical implementation of the loop–tree duality method European Physical Journal C: Particles and Fields External Momentum Internal Mass Loop Momentum Loop Integral Contour Deformation |
author_facet |
Sebastian Buchta Grigorios Chachamis Petros Draggiotis Germán Rodrigo |
author_sort |
Sebastian Buchta |
title |
Numerical implementation of the loop–tree duality method |
title_short |
Numerical implementation of the loop–tree duality method |
title_full |
Numerical implementation of the loop–tree duality method |
title_fullStr |
Numerical implementation of the loop–tree duality method |
title_full_unstemmed |
Numerical implementation of the loop–tree duality method |
title_sort |
numerical implementation of the loop–tree duality method |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2017-05-01 |
description |
Abstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs. |
topic |
External Momentum Internal Mass Loop Momentum Loop Integral Contour Deformation |
url |
http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6 |
work_keys_str_mv |
AT sebastianbuchta numericalimplementationofthelooptreedualitymethod AT grigorioschachamis numericalimplementationofthelooptreedualitymethod AT petrosdraggiotis numericalimplementationofthelooptreedualitymethod AT germanrodrigo numericalimplementationofthelooptreedualitymethod |
_version_ |
1725291792167862272 |