Numerical implementation of the loop–tree duality method

Abstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-mome...

Full description

Bibliographic Details
Main Authors: Sebastian Buchta, Grigorios Chachamis, Petros Draggiotis, Germán Rodrigo
Format: Article
Language:English
Published: SpringerOpen 2017-05-01
Series:European Physical Journal C: Particles and Fields
Subjects:
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6
id doaj-39d6ed6e9b2848eeae7ab14efb540f94
record_format Article
spelling doaj-39d6ed6e9b2848eeae7ab14efb540f942020-11-25T00:40:02ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522017-05-0177511510.1140/epjc/s10052-017-4833-6Numerical implementation of the loop–tree duality methodSebastian Buchta0Grigorios Chachamis1Petros Draggiotis2Germán Rodrigo3Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc CientíficInstituto de Física Teórica UAM/CSIC, Universidad Autónoma de MadridInstitute of Nuclear and Particle Physics, NCSR “Demokritos”Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc CientíficAbstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6External MomentumInternal MassLoop MomentumLoop IntegralContour Deformation
collection DOAJ
language English
format Article
sources DOAJ
author Sebastian Buchta
Grigorios Chachamis
Petros Draggiotis
Germán Rodrigo
spellingShingle Sebastian Buchta
Grigorios Chachamis
Petros Draggiotis
Germán Rodrigo
Numerical implementation of the loop–tree duality method
European Physical Journal C: Particles and Fields
External Momentum
Internal Mass
Loop Momentum
Loop Integral
Contour Deformation
author_facet Sebastian Buchta
Grigorios Chachamis
Petros Draggiotis
Germán Rodrigo
author_sort Sebastian Buchta
title Numerical implementation of the loop–tree duality method
title_short Numerical implementation of the loop–tree duality method
title_full Numerical implementation of the loop–tree duality method
title_fullStr Numerical implementation of the loop–tree duality method
title_full_unstemmed Numerical implementation of the loop–tree duality method
title_sort numerical implementation of the loop–tree duality method
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2017-05-01
description Abstract We present a first numerical implementation of the loop–tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.
topic External Momentum
Internal Mass
Loop Momentum
Loop Integral
Contour Deformation
url http://link.springer.com/article/10.1140/epjc/s10052-017-4833-6
work_keys_str_mv AT sebastianbuchta numericalimplementationofthelooptreedualitymethod
AT grigorioschachamis numericalimplementationofthelooptreedualitymethod
AT petrosdraggiotis numericalimplementationofthelooptreedualitymethod
AT germanrodrigo numericalimplementationofthelooptreedualitymethod
_version_ 1725291792167862272